SOFIA Tele-talk May 10, 2023

The PDR in M17-SW analyzed with FIFI-LS onboard SOFIA

Randolf Klein (SOFIA/USRA) A. Reedy; Ch. Fischer; L. Looney; S. Colditz; D. Fadda; A. Tielens; W. Vacca

M17 with IRAC, FORCAST, PACS (Lim e al. 2020)

Photodissociation Regions (PDRs)

분

<u>s</u>

ы

Hot Star(s)

- * The classical schematic of a PDR from Hollenback & Tielens (1997)
- * Ionizing stars on the left have created an HII region
- * The radiation is eroding a molecular cloud on the right.
- Ionization and photodissociation of different species at different optical depths create various layers.
- * The atoms and ions emit fine-structure lines in the far infrared (FIR) largely unaffected by extinction.

Layers of fine-structure lines

- * M17-SW is a well studied edge-on PDR region
- * The goal was to create maps of the physical conditions in M17-SW
- * We mapped M17-SW in six fine structure lines and three CO lines with FIFI-LS
- * Four fine structure lines are shown
- Clear layering of ionized and PDR tracers

[O I]63µm (blue), [O III]88µm (green), [O I]146µm (yellow), and [C II]158µm (magenta); 50% colored contours; circles show respective beam sizes; green stars for spectral types earlier than O9, white crosses for O9 and O9.5 (Hoffmeister et al. 2008); arrow points north

- * Far Infrared Field-Imaging Line Spectrometer
- * Two independent channels in parallel:
 - * Blue: 51–125 μm, 5x5 6" spaxels, 30" FOV
 - * Red: 115–203 µm, 5x5 12" spaxels, 60" FOV
- * Image slicer rearranges the 25 spaxels onto a pseudo-slit
- * Gratings disperse the light onto 16 pixels.
- * $R = \lambda / \Delta \lambda = 500$ to 2000.

spaxel = spatial pixel

FIFI-LS

* Far Infr * Two inc * Blue: spectrograph slit * Red: spatial dimension * Image s pseudo Ision Grating ** ctra * $R = \lambda / \Delta$

SOFIA Tele-talk May 10, 2023

FIFI-LS

FIFI LS FOCAL PLANE "FOOTPRINT" ON SKY AND PROJECTION ON DETECTOR ARRAYS

16 x 25 pixel detector array

- * Far Infrared Field-Imaging Line Spectrometer
- * Two independent channels in parallel:
 - * Blue: 51–125 μm, 5x5 6" spaxels, 30" FOV
 - * Red: 115–203 µm, 5x5 12" spaxels, 60" FOV
- * Image slicer rearranges the 25 spaxels onto a pseudo-slit
- * Gratings disperse the light onto 16 pixels.
- * $R = \lambda / \Delta \lambda = 500$ to 2000.

spaxel = spatial pixel

FIFI-LS

From Data Cubes to Intensity Maps

Simultaneous fitting of:

- * Line flux,
- * Continuum, and
- * Water vapor (main parameter for atmospheric absorption with ATRAN model

Other Parameters set from a-priory knowledge:

- Line center and width
- * Altitude and airmass

SOFIA Tele-talk May 10, 2023

Example fit of an [OI]146µm line

Estimating and Propagating Uncertainties

- * Data reduction requires re-gridding into a regular data cube
- Uncertainties are estimated from distribution of all measurements around each data cube cell (Dario Fadda, github:darioflute/fifipy/cubik)
 Differs from the pipeline derived uncertainties
- * Uncertainties were propagated through the line and continuum fitting
- * Data cube is oversampled, thus, neighboring pixels in the data cubes and subsequent maps are correlated on scales of the original beam size
- * All the maps have been smoothed to a common spatial resolution for the PDR modeling.
- * When smoothing the maps, the noise won't scale down as much as if all pixel were uncorrelated.
- * When propagating the uncertainties to the smoothed maps, they were scaled according to their assumed correlation (Klein, R. 2021, RNAAS, 5, 39)

PDR modeling with PDR Toolbox

- PDRT provides pre-computed model grids for PDR models and Python code to fit observations
- * While we used it, there was a web interface.
- We downloaded the model (now available as wk2006) and coded the same fitting algorithm in IDL to fit not one point, but the whole maps (point by point)
- * The model wk2006 is a one-dimensional face-on model.

Ultraviolet photons from O and B stars strongly influence the structure and emission spectra of the interstellar medium. The UV photons energetic enough to ionize hydrogen $h\nu > 13.6$ eV will create the H II region around the star, but lower energy UV photons escape. These far-UV photons (6 eV $< h\nu < 13.6$ eV) are still energetic enough to photodissociate molecules and to ionize low ionization-potential atoms such as carbon, silicon, and sulfur. They thus create a *photodissociation region* (PDR) just outside the H II region. In aggregate, these PDRs dominates the heating and cooling of the neutral interstellar medium. The gas is heated by photo-electrons from grains and cools mostly through far-infrared fine structure lines like [O I] and [C II].

The PDR Toolbox is an open-source, science-enabling tool for the community, designed to help astronomers determine the physical parameters of photodissociation regions from observations. Typical observations of both Galactic and extragalactic PDRs come from ground- and space-based millimeter, submillimeter, and far-infrared telescopes such as ALMA, SOFIA, JWST, Spitzer, and

Intensity maps of L_{FIR}, CO(14-13), and [OI]146µm SOFIA Tele-talk May 10, 2023

Only L_{FIR} was used as absolute quantity, ratios were input parameters

PDR Modeling Result

- Hydrogen density map: a clear distinction between
 - * a high density (~10⁶cm⁻³) and
- * a low density (~10⁴cm⁻³) solution Let's see how this density jump comes about.

The color saturation starts to fade at an uncertainty of 0.2 dex and reaches white at an uncertainty of 1.25 dex.

Anatomy of the PDR Model

- * The PDR Toolbox provides predictions of line intensities and ratios as a function of:
 - * Density *n*
 - * UV intensity G₀
- As a simple example: Total infrared intensity
 The IR intensity depends only on *G*₀,
 because it is assumed that all of the UV radiation is absorbed in the molecular cloud and reemitted in the IR.

PDR Modeling Result

- Hydrogen density map: a clear distinction between
 - * a high density (~10⁶cm⁻³) and
- * a low density (~10⁴cm⁻³) solution Let's see how this density jump comes
- about.
 - Let's look at how the solution
 changes between positions 3 and 4

The color saturation starts to fade at an uncertainty of 0.2 dex and reaches white at an uncertainty of 1.25 dex.

Anatomy of the PDR Model

- * Solid lines: Where the measured quantity is predicted
- * Dotted lines: 1sigma error
- Cross and dashed lines: least chi² and +1 and +3 contour

red: I_{FIR}, green: CO(14 \rightarrow 13)/[O I]146 µm, blue: [O I]146µm/I_{FIR}

Anatomy of the PDR Model

CO(14 →13)/
 [OI]146µm is a good density constraint or
 upper limit.

- IFIR and OI/IFIR can have two density solutions.
- Density jump results from
 jumping from one to
 the other solution.

6 Pos. 3 5 ů log₁₀ 4 3 $\chi^2_{\rm min} = 0.41$ 2 3 $\log_{10}(n/cm^{-3})$

red: I_{FIR} , green: CO(14 \rightarrow 13)/[O I]146 μm , blue: [O I]146 $\mu m/I_{FIR}$

PDR Modeling Result

- * The derived UV field follows closely the IR intensity by the models design.
- * The black contour is actually the IR intensity while the map is *G*₀.

The low-density solution is only an upper limit to the density in the HII region. SOFIA Tele-talk May 10, 2023

Why weren't [CII] and [OI]63µm included in the modeling?

- * Optical depth effects!
- * The model is face-on, but the M17-SW PDR is edge-on.
- The intensity of potentially optically thick lines as [CII] and [OI]63μm will depend on the depth into the PDR.
- * Only optically thin lines and the IR intensity were used for the model as they won't be affected by the depth into the cloud.
- But we can compare predictions for the optically thick lines to the observations.

Predictions vs Observations

[CII]/[OI]146µm:

- * ~4x more [CII] rel. to [OI] observed than predicted.
- * Even when subtracting ubiquitous [CII] foreground emission still ~2x more
- * The excess [CII] must be from other phases not associated with the PDR (foreground, HII,...)

Predictions vs Observations

$[OI]63\mu m / [OI]146\mu m$:

- * 63µm line predicted ~30 times stronger than the 146µm line
- * Observed ratios in the PDR decrease from ~10 to ~1
- * Plausible scenario: A highly self-absorbed $63\mu m$ line with increasing optical depth into the PDR
- * Note: the lower level of 63μ m line is the ground level, while the lower level of the $146\mu m$ line is the upper level of the 63μ m line. Thus no selfabsorption to be expected in the $146\mu m$ line.

- Is the density jump the location of the ionization and photodissociation front?
- * The different tracers form layer there.
- * A clump with M17-UC1 is poking into the HII region
- * Similar sharp layers seen in infrared H₂ and Br_{γ} observations (Burton et al., 2002)
- * With these densities and UV fields the distance between both fronts: 10-3pc to 0pc
- * The front should be between the layers about where the model determined the jump.

We...

- * mapped several FIR transitions with FIFI-LS/SOFIA.
- * derived H density and UV intensity matching literature values.
- * now have maps (0.2pc resolution).
- * located the PDR fronts on these maps.
- * confirm the presence of an irradiated "pillar" in M17-SW.

* see ubiquitous [CII] emission and optical depth effects in the [OI]63µm line.

