

SOFIA Community Task Force

May 12, 2010

Spectroscopic Opportunities for SOFIA

vatorv

L.M. Ziurys University of Arizona Dept. of Astronomy Dept. of Chemistry Arizona Radio Observatory Steward Observatory

Molecular Astrophysics at SOFIA?

- Molecular astrophysics began in 1970
- Led to discovery of ~145 different interstellar molecules
- Regime of ground based *millimeter astronomy*

 \Rightarrow 1 mm (200 – 300 GHz), 2 mm (125 – 180 GHz), and 3 mm (65 -115 GHz)

- Molecular line observations
 - \Rightarrow Major contributor to understanding of dense interstellar medium

80

60

40

- What can SOFIA do that is NOVEL ?
- Heterodyne receivers:
 - L1: 1.25 1.5 THz
 - L2: 1.8 1.92 THz
 - 2.4 2.7 THz; ~ 4.7 THz
 - Future projects
- Beam ~ 16"

ervatorv

SOFIA Community Task Force

May 12, 2010

Known Interstellar Molecules

2		3		4	5	6	7	8	9	10
H_2	CH⁺	H ₂ O	C ₃	NH_3	SiH ₄	CH₃OH	CH₃CHO	CH ₃ CO ₂ H	CH_3CH_2OH	
OH	CN	H_2S	HNC	H₃O⁺	CH₄	NH ₂ CHO	CH_3NH_2	HCO ₂ CH ₃	(CH ₃) ₂ O	CH ₃ COCH ₃
SO	CO	SO ₂	HCN	H ₂ CO	СНООН	CH₃CN	CH₃CCH	CH_3C_2CN	CH_3CH_2CN	CH ₃ (C≡C) ₂ CN
SO⁺	CS	NNH⁺	CH ₂	H ₂ CS	HC≡CCN	CH₃NC	CH ₂ CHCN	C ₇ H	H(C≡C) ₃ CN	(CH ₂ OH) ₂
SiO	C ₂	HNO	NH_2	HNCO	CH₂NH	CH₃SH	H(C≡C)₂CN	H_2C_6	H(C≡C) ₂ CH ₃	
SiS	SiC	CCS	HOC ⁺	HNCS	NH ₂ CN	C₅H	C ₆ H	CH ₂ OHCHO	C ₈ H	
NO	СР	\mathbf{NH}_{2}	NaCN	CCCN	H ₂ CCO	HC₂CHO	$\text{c-CH}_2\text{OCH}_2$		C ₈ H⁻	11
NS	CO⁺	H_3^+	MgNC	HCO ₂ ⁺	C₄H	CH ₂ =CH ₂	H ₂ CC(OH)H		CH ₃ CONH ₂	H(C≡C)₄CN
HCI	HF	NNO	AINC	СССН	$c-C_3H_2$	H_2C_4	C ₆ H⁻			12
NaCl	SH	HCO	SiCN	c-C₃H	CH ₂ CN	HC ₃ NH ⁺				12
KCI	HD	HCO⁺	SiNC	ccco	C ₅	C₅N				13
AICI	ΡΟ	OCS	H₂D⁺	C ₃ S	SiC ₄					
AIF	AIO	ССН	MgCN	НССН	H_2C_3	~100	Carbon M	olecules		H(C≡C)₅CN
PN		HCS⁺	KCN	HCNH ⁺	HCCNC	11 Sil	icon Spec	ies		
SiN		c-SiCC	HCP	HCCN	HNCCC	10 Me	tal Contai	ning Mo	lecules	
NH		ссо	ССР	H₂CN	H₂COH⁺	6 Pho	sphorus S	Species		
СН		AIOH	PH_3	c-SiC ₃	C₄H ⁻	· · · · · · · · · · · · · · · · · · ·				

Molecules Unique to Sub-mm and Far IR

- Interstellar Molecular Gas is COLD (T ~ 10 -100 K)
- Rotational Levels predominantly populated
 - \Rightarrow two-body **collisions** with H₂
- Spontaneous Decay results in narrow emission lines
- Rotational Transition Frequencies
 - \Rightarrow proportional to *moments of inertia*
 - Rotational Spectrum is "Finger Print" Pattern
 - Unique to a Given Chemical Compound
 - Allows for *unambiguous* identification

$$B = \frac{\hbar}{2I} \quad I = \mu r^2 \quad \Box$$

v = 2B (J+1)

- Atomic Mass Bond Lengths Bond Angles
- Light molecules with small I
- \Rightarrow Large rotational constants
- \Rightarrow Spectrum in sub-mm, far IR
- "Light" = *HYDRIDES*

What we know about hydrides...

Chiefly from Ground-based Observations

Known Interstellar (Diatomic) Hydrides								
Hydride	Detection Method	THz Transitions						
СН	Optical, cm λ -doubling, THz	N = 2 – 1; λ -doubling, hyperfine: 1.47 THz						
OH	$cm \lambda$ -doubling, THz	J = $3/2 - \frac{1}{2}$; λ -doubling, hyperfine: 2.51 THz						
NH	Optical	N = 1 - 0; fine structure/hyperfine: 1.0 THz						
SH	IR	J = $3/2 - \frac{1}{2}$; λ -doubling, hyperfine: 1.38 THz						
HCI	Sub-mm	J = 2 – 1; quadrupole hyperfine: 1.25 THz						
HF	THz (ISO)	J = 1 – 0: 1.23 THz						
CH⁺	Optical	J = 2 – 1: 1.67 THz						
H_3O^+	Sub-mm	$J(K_a, K_c) = 0(0,0) - 1(0,1)$: 0.98 THz $J(K_a, K_c) = 2(0,0) - 1(0,1)$: 2.97 THz						
H_2D^+	Sub-mm	$J(K_a, K_c) = 1(0,1) - 0(0,0)$: 1.37 THz $J(K_a, K_c) = 2(1,1) - 2(1,2)$: 1.11 THz						

May 12, 2010

SOFIA Community Task Force

- Chance sub-mm transitions
 observable from ground
- OH, CH, SH etc have ²Π ground electronic states
- ⇒ Lambda-doubling transitions at cm wavelengths
- Electronic transitions in optical, UV
- Perhaps not always best methods for studying hydrides
- \Rightarrow Very selective

ervatorv

 More useful to study pure rotational transitions in THz region

Importance of Hydrides

- Fundamental building blocks of Interstellar Chemistry
- Ubiquitous presence in dense and diffuse clouds
- Important coolants in dense gas
 ⇒ large Einstein A's
- Trace elemental compositions
- Observations really lacking !!
- CH⁺, NH only observed optically
- One observation of SH
- Limited data on THz OH, CH

⇒ COMMON Hydrides Unexplored

Neufeld & Wolfire

Specialty Molecules

Species	Ground State	Estimated B (MHz)*	THz Transitions
SiH	$^{2}\Pi_{r}$	221,590	J = 5/2 – 3/2; 1.2 THz
PH⁺	$^{2}\Pi_{r}$	251,429	J = 5/2 – 3/2; 1.4 THz
AIH⁺	2∑+	201,938	N = 3 – 2; 1.2 THz
CrH⁺	5∑+	199,840	N = 3 -2 1.1; THz
TiH	${}^4\Phi_{r}$	160,749	J = 7/2 – 5/2; 1.1 THz
TiH⁺	${}^3\Phi_{r}$	174,768	J = 3 – 2; 1.04 THz
FeH	$^{4}\Delta_{i}$	202,181	J = 9/2 – 7/2; 1.8 THz
FeH⁺	${}^5\Delta_{ m i}$	198,665	J = 11/2 – 9/2; 2.1 THz
MgH⁺	1∑+	188,050	J = 3 -2; 1.2 THz

* FREQUENCIES NOT AVAILABLE

mmmmm $\$ $\Lambda M \Lambda M$

SOFIA Community Task Force

May 12, 2010

Relevance of "Specialty Molecules"

- Abundant in atmospheres of M, S, and L stars (CrH, FeH, MgH, CaH)
- Important in latest sub-dwarfs (T type "pseudo" planets)
- → Shift from metal oxides to metal hydrides dramatic
- Implications for planetary atmospheres
- Novel connection between photospheric and circumstellar envelope material
- \Rightarrow Known circumstellar refractory species
- Tracers of grain condensation

rvatorv

May 12, 2010

Connecting photospheric and circumstellar material....

Cycling of Molecular Material in Interstellar Space

- Where to study hydrides ??
- Molecules
 cycled through
 interstellar space
- Many interesting sources.....

May 12, 2010

Molecular Clouds...

Circumstellar Envelopes of Evolved Stars...

So States

SOFIA Community Task Force

May 12, 2010

•Region Measured: 210 - 285 GHz

- (75 GHz)
- IRC+10216:
- 615 lines total
- 128 unidentified
- VY Canis Majoris:
- 203 lines total
- 14 unidentified

bservatory

Excellent sources for common and "specialty" Hydrides

Planetary Nebulae...

- AGB stars evolve into planetary nebulae (PNe)
- Central star becomes white dwarf: HOT (T ~ 100,000 K) UV emitter
- Most of original stellar mass flows into ISM on timescales of 10,000 yrs.
- Fate of Molecular Circumstellar Shell ?
- ⇒ Molecules in Middle-Aged to Old Planetary Nebulae

rvatorv

Y-scale: T_R*(K)

rizona adio

bservatory

Spitzer Image

May 12, 2010

Molecule Survival in Old Planetary Nebula

- In addition to CO, H₂CO and HCO⁺:
- HCN, HNC, CN seen in Helix (Bachiller 1997)
- \Rightarrow CCH and C₃H₂ in the Helix
- \Rightarrow Observed with ARO 12 m (Tenenbaum et al.)
- H₂CO lines indicate *n* ~ 3 x 10⁵ cm⁻³
 ⇒ MOLECULES SURVIVING in SELF-SHIELDING CLUMPS

(Howe et al. 1994; Redman et al. 2003)

Great Targets for OH, CH, NH, SH, etc.

• Start with 1-8 M_☉ Star

• <0.1 M_{\odot} in ionized gas

Left with 0.2 − 7.2 M_☉

At end: 0.4 − 0.7 M_☉

in White Dwarf

What is required..

No baseline subtraction
No smoothing
No other manipulations
3 - 5 hours
Signal - averaging
Position-switching

Arizona Radio Observatory

RCas102.11INT= 01:20:54 DATE: 12 OCT 20052000RADC=23:58:24.851:23:19 (23:58:24.851:23:19) CAL= 580.3 TS= 971.FREQ=345795.97SYN=8.59697222 VEL=25.0 DV= -0.87 FR=1000 SB=2

my him more than the second when the second of the second se

The New Technology of ALMA-Type Mixers

- New Type of SIS Mixers developed for ALMA
- \Rightarrow "Sideband-Separating"
- Two mixers with RF and IF Quadrature Hybrids
- \Rightarrow obtain upper and lower sideband simultaneously
- but separated with good image rejection and two IF outputs
- Split-block design (A. Kerr; NRAO)
- Eliminate atmospheric noise
- from image
- \Rightarrow Most sensitive SIS mixers to date
- \Rightarrow Unequaled Stability

OFFER THE NEXT ORDER of MAGNITUDE GAIN in OBSERVING SENSITIVITY

Arizona Radio Observatory

SOFIA Community Task Force

May 12, 2010

vatorv

Balanced Mixers: A New Development

- "Balanced" mixers an advantage
 - \Rightarrow Phase balance of RF and LO signals
 - \Rightarrow eliminates LO noise (5 10 K)
 - \Rightarrow reduces LO power requirement by factor of 50 (THz frequencies)
- Some components already available (180° hybrid: Nb on quartz substrate)

bservatory

A Combined SBS/Balance Mixer Arizona/NRAO collaboration (Band 8: 385 – 500 GHz)

Future Wish Lists

- Sideband-Separating, Balanced Heterodyne Receivers
 - \Rightarrow Capitalize on developments for ALMA
- ALMA Bands 8, 9, 10: currently DSB, but SBS work in progress for Band 8, Band 9
- Band 10: A New NbTiN material (pure niobium)
- The BEST in
- \Rightarrow Sensitivity
- \Rightarrow Stability
- Enable

New Spectroscopic Observations With SOFIA Receiver Bands Frequency Range Band Wavelength Number (GHz) (mm) 31.3 - 45.0 6.7 - 9.667 - 90 3.3 - 4.52 3 84 - 116 2.6 - 3.61.8 - 2.4 125 - 163 163 - 211 1.4 - 1.85 6 211 - 275 1.1 - 1.4 275 - 373 7 0.8 - 1.18 385 - 500 0.6 - 0.8602 - 720 9 0.4 - 0.510 787 - 950 0.3 - 0.4

Thank you !

