Water in star-forming regions with Herschel

Introduction and motivation A 495 hr key-program for Herschel Low-/Intermediate-mass YSOs Pre-stellar cores Class 0/I sources Outflows High-mass YSO's WISH Circumstellar disks

http://www.strw.leidenuniv.nl/WISH

Motivation: H₂O as chemical and physical probe

- H₂O abundance shows large variations in SF regions: <10⁻⁸ 3. 10⁻⁴ => unique probe of different physical regimes
 - Natural filter of warm gas
- Main reservoir of oxygen => affects chemistry of all other species
- Traces basic processes of freeze-out onto grains and evaporation, which characterize different stages of evolution

pre-stellar cores => YSO's => disks => comets

Motivation (cont'd)

- H₂O as a dynamical probe of warm high density gas: infall, outflow, quiescent gas, mixing, ...
- H₂O's role in the thermal balance: when and where does H₂O become dominant heating or cooling agent?
- HDO/H₂O: determined by gas-phase or grainsurface processes? Relation with comets?
- H₂O as a radiative transfer challenge: high/low optical depths, masers,
- HIFI legacy

Proposed Herschel-HIFI key program

- Survey a selected set of H₂O lines in star-forming regions ranging from pre-stellar cores to low-, intermediate- and high-mass YSO's and circumstellar disks
- Include isotopic lines: H₂¹⁸O, H₂¹⁷O (HDO from ground)
- Include limited maps of H₂O (outflows, ... ~2'x2')
- Include chemically related species: O, OH, H₃O⁺
- Include a few key high-J CO lines
- Include radiation diagnostics (UV, X-rays)
- Complementary PACS data

Herschel/HIFI data will be unique

HIFI is a major step forward because of:

- higher spatial resolution (3-5 w.r.t. SWAS/ODIN, 8 with ISO-LWS)
- higher sensitivity (10 w.r.t. SWAS/ODIN)
- higher spectral resolution => shocks vs. quiescent H₂O (10⁴ w.r.t. LWS)
- lines arising from large range of energy levels

At least factor 10 deeper than ISO-LWS

H₂O HIFI lines

Observe common set of lines for all YSOs

Low-Mass: Pre-stellar cores

Model B68 water profile

-Where does onset for H₂O ice formation and freeze-out occur? -How effective are non-thermal desorption mechanisms?

Predicted H₂**O profile and strength depends sensitively on various processes** and on thermal structure core Bergin et al.

Submillimeter emission

Probing the physical structure

Low-Mass: Class 0 sources

-What is origin of strong H₂O emission? Quiescent envelope or outflow?

Nisini et al. 1999 Ceccarelli et al. 1998

SWAS map of NGC 1333

Bergin et al. 2003

High-Mass Pre-Stellar cores

MSX

SCUBA

- Precursors of high-mass YSOs?

Johnstone et al. 2003

ISO data

Boonman et al. 2003

SWAS data massive YSOs

Compare with JCMT CO 7-6 data to assess contribution outflow (at most 50%) Snell et al. 2000 Boonman et al. 2003

Typical temperature and density structure YSO

Van der Tak et al. 1999, 2000

Predicted abundance profile in YSOs

H₂O in protoplanetary disks

Aikawa et al. 2002