Water in the Universe

Ewine F. van DishoeckLeiden Observatory / Max-Planck Inst. für Extraterrestrische PhysikWith thanks to many colleagues, i.p. WISH teamSee Euronews space magazineSee Euronews space magazine

Outline

- Why water?
- How to observe water
- Water puzzles
 - External galaxies
 - Evolved stars
 - Shocks
 - Diffuse + translucent clouds
 - Molecular clouds, pre-stellar cores
 - YSOs
 - Disks: outer vs. inner disks
 - Comets and the solar system

See Cernicharo & Crovisier 2005, Bergin & Melnick 2005, Th. Encrenaz 2008 ARA&A for recent reviews

Why interest in water?

- A dominant form of oxygen => affects all species
 - Oxygen budget puzzle
- Diagnostic for 'hot spots'
 - Large variation H₂O gas abundance <10⁻⁸ to 3.10⁻⁴
- Role in energy balance as coolant
 - Heating agent if IR pumped
- Origin of water on Earth (through HDO/H₂O)
 - Water trail from clouds disks comets, planets
- Chemistry of life occurs in water

Oxygen budget in a cold dense cloud

Component	Fraction of solar O	Observations
Refractory dust	30%	Optical/UV, IR
Ices (H ₂ O,CO ₂ , CO)	26%	Mid-IR
Gas-phase CO	9%	Submm Mid-IR
Remainder (O? O ₂ ? H ₂ O?)	35%	Far-IR, Submm, Mid-IR

Taurus cloud

Q: where is missing oxygen?

Further motivation

- Traces basic ice formation and desorption: test of gas-grain chemistry
- H₂O as a dynamical probe of warm high density gas: infall, outflow, quiescent gas, mixing, ...
- H₂O as a radiative transfer challenge: high/low optical depths, masers,

H₂O transitions (µm)

- Also 22 GHz maser, first detected in Orion by Cheung et al. 1969

H₂O Herschel-HIFI lines

Lines with range of excitation conditions available, with orders of magnitude better sensitivity, spatial and spectral resolution

Infrared: absorption gas and solids

H₂O gas chemistry

- Cold ion-molecule chemistry:
 - O + H₃⁺ OH⁺ ... H₃O⁺ + e H₂O Typical abundances ~10⁻⁷
- High-temperature chemistry (>230 K):
 O + H₂ OH H₂O

Drives all gas-phase O into $H_2O =>$ abundance $>10^{-4}$ Back reactions with H drive H_2O back to OH and O

Photodissociation by UV radiation:
 H₂O OH + H

Rates for most/all (?) reactions well known

Oxygen chemistry

Pure gas phase chemistry at low T produces H₂O abundance of ~10⁻⁷, and eventually drives all O into O₂

X-ray destruction of water

- H_2O destroyed close to X-ray source in 5x10⁴ yr for $L_X = 10^{27}$ erg s⁻¹
 - H_3^+ and He^+ more abundant
 - UV from secondary electrons with H₂
- Faster destruction for higher fluxes

H₂O grain chemistry

- Three routes for producing H₂O, through hydrogenation of O. O₂ and O₃
 - Relative importance depends on rates, energy barriers, hopping, diffusion, ...
- Postulated >25 yr ago, only now being tested in laboratory
 - Miyauchi et al. 2008, Ioppolo et al. 2008
- Desorption mechanisms
 - Thermal desorption: Fraser et al.
 - Photodesorption: Öberg et al.
 - CR-induced desorption

Tielens & Hagen 1982

Q: can this model be tested observationally?

Water ice formation

- Formation several monolayers of H₂O and OH ice in translucent clouds
- Form thick ice layers in dense clouds
- Results depend sensitively on molecular data, grain morphology, ...
- Underproduce H₂O ice compared with observations

Cuppen & Herbst 2007

Water in O-rich evolved stars

Neufeld et al. 1996

- Major coolant of outflowing circumstellar gas
- Many lines detected by ISO-LWS and SWS
- Major differences in inferred *dM/dt* by different groups, related to different gas temperature structures?

Q: what does H_2O tell us about physical structure ?

Water in C-rich evolved stars

- Detection of H₂O in C-rich envelope IRC+10216 came as a surprise
- Evaporating icy planetesimals?

Q: Origin O-rich species in C-rich stars? How common?

Water in external galaxies

Arp 220 ISO-LWS

Gonzalez-Alfonso et al. 2004

- H₂O 22 GHz megamasers; trace black hole mass; 183 GHz Arp 220
- H₂O/OH~1 in nucleus, ~0.1 in extended region from ISO-FIR absorption
 - Gonzalez-Alfonso et al. 2004, 2008, Goicoechea et al. 2005
- $H_2O/H_2 < 10^{-8}$ from ODIN on kpc scale; increases to 10⁻⁷ if 10% filling factor
 - Wilson et al. 2007
- H₃O⁺ detected ⇒ H₂O/H₂~2. 10⁻⁷ on few hundred pc van der Tak et al. 2007
 Q: Are these abundances characteristic of general ISM?

Shocks

- H₂O clearly detected in shocks associated with supernova remnants and YSOs
- Abundance ~10⁻⁷-10⁻⁶ ⇒ not all O driven into H₂O, except in densest regions and highest velocities
- UV photodissociation of pre-shock and shocked gas? Freeze-out behind shock? Shock physics?

Supernova remnant IC443

Snell et al, 2005; Franklin et al. 2008

Q: why not all oxygen driven into H_2O at high T?

Orion outflow

- Wealth of ISO-LWS and SWS lines, including absorption and P-Cygni profiles
- H₂O/H₂~(2-3).10⁻⁵

Orion-KL H₂O and H₂¹⁸O profiles

- H₂O abundance in extended cloud may be as low as 10⁻⁸, but still controversial

Water in diffuse and translucent clouds

- H₂O/H₂<10⁻⁸ from UV absorption
- H₂O/H₂~10⁻⁸-few.10⁻⁷ from 557 GHz absorption
 - Neufeld et al. 2000, 2002; Plume et al. 2004

H₂O/H₂~3.10⁻⁷ from IR absorption toward Galactic Center

Moneti & Cernicharo 2000

Q: are results consistent with pure gas-phase chemistry?

General molecular clouds

o-H₂O 557 GHz 1₁₀-1₀₁

Snell et al. 2000 Wilson et al. 2003

-SWAS and ODIN (~3'):

Water emission is weak => most water frozen out on grains in cold clouds

Q: how low is water abundance in cold clouds? is this consistent with ice abundances?

Summary (o-)H₂O abundances

Bergin & Melnick 2005

Low-Mass: Pre-stellar cores

Model B68 water profile

- Q: Where does onset for H_2O ice formation and freeze-out occur?
- Q: How effective are non-thermal desorption mechanisms?
- Q: What is para-H₂O abundance?

Hollenach et al. 2008

Ice abundances in cold clouds

-Q: why is most, but not all, oxygen in ices? Atomic O?

Pontoppidan et al. 2004

High-mass pre-stellar cores

MSX

SCUBA

-Q: do high-mass pre-stellar cores have similarly low H₂O gas abundances?

Johnstone et al. 2003

Hot, steaming water near protostars

ISO-SWS mid-IR absorption for high-mass YSOs

Combine with SWAS and ISO-LWS data to constrain abundance profile

Helmich et al. 1996 Boonman et al. 2003

Inferred abundance profile

Low-Mass: Class 0 sources

-Q: What is origin of strong H₂O emission? Quiescent warm envelope or outflow?

Nisini et al. 1999, 2000 Ceccarelli et al. 1998

Try to link H₂O with mm continuum and SiO

- Q: Are these real correlations or not?

Ceccarelli et al. 1999

Low-Mass: Class I sources

Class 0: H₂O

Class I: OH

-Why do Class I sources have lower H₂O abundances and larger OH/H₂O ratio? Enhanced photodissociation? Longer timescale for freeze-out?

Nisini, Giannini et al. 2002

Hot water from disk accretion shock?

Deeply embedded Class 0 protostar

Q: Chemical signatures of accretion disks? How is material modified as it is incorporated into disk?

Watson et al. 2007

Where is water in protoplanetary disks?

Q: use water as tracer of radial and vertical mixing? Probe snow line?

JWST + Herschel

Surface layer

Intermediate layer

Midplane

H₂O ice in disks

Terada et al. 2007, Pontoppidan et al. 2005

Q: how much water gas is in outer disk?

Water and organics in inner disk

Hot water and organics in inner disk

NASA / JPL-Caltech / J. Carr (Naval Research Laboratory)

ssc2008-06a

Carr & Najita 2008 Salyk, Pontoppidan et al. 2008

Near-IR H₂O and OH in disks from ground

 \Rightarrow H₂O and OH come from inner 0.5-1 AU!

Implications

- Water gas is found well inside the 'snow' line (estimated at ~3 AU)
- Water is expected to disappear in ~10⁵ yr
 ⇒ replenishment needed
- Inward radial migration or upward mixing of icy grains and planetesimals, followed by evaporation?

Water in comets

Q: - Formation temperature and history (from o/p ratio)? - Source of water on Earth (from HDO/H₂O)?

Conclusions

- H₂O found throughout universe: 'waterworld'
- H₂O abundance varies greatly from region to region
- Model scenarios available, but many questions remain
- Herschel HIFI and PACS will provide our best chance for decades to 'nail down' gaseous H₂O and OH in galaxies, evolved stars, clouds, YSOs, outer disks
- Need SOFIA for spectrally resolved [O I]
- Need JWST, SOFIA, ELTs for hot gas in inner disk
- Need JWST, ground for ice mapping
- Need complementary laboratory data, theoretical studies of collision rates, and good radiative transfer codes!