# Studying Trans-Neptunian objects via stellar occultations: ground-based and air-based with SOFIA

A.A.S. Gulbis (Southern African Large Telescope & MIT), J.L. Elliot, M.J. Person, & C.A. Zuluaga (MIT), and E.W. Dunham (Lowell Obs.)

+ observations from collaborators (Williams College and other)
+ supporting slides and information from SOFIA team











| Outline |                                                     |  |  |  |  |  |
|---------|-----------------------------------------------------|--|--|--|--|--|
|         | What can we learn about TNOs from occultations?     |  |  |  |  |  |
| O       | Predictions with the MIT Ephemeris Correction Model |  |  |  |  |  |
| 0       | Ground-based observations                           |  |  |  |  |  |
| 0       | Air-based observations with SOFIA                   |  |  |  |  |  |
| ۲       | Near-term expectations                              |  |  |  |  |  |

## **Returns from occultation observations**

- Accurate size measurement
  - spatial resolution of a few km at 30 AU
- Sensitive atmospheric probe
  - temperature, number density, and pressure to microbar levels
  - detect extinction
- Spatial and temporal variability
  - object shape
  - local atmospheric density variations
  - changes in observed parameters over time
- Targeted (or serendipitous) discoveries
  - rings (e.g. Uranus, Elliot et al. 1977)
  - atmospheres (e.g. Pluto, Elliot et al. 1988)
  - companions (e.g. Larissa, Reitsema et al. 1982)



*Observation of a stellar occultation by asteroid Pallas with 130 chords (Dunham et al., AJ, 1990)*.

## Predicting stellar occultations by TNOs

- Astrometric measurements for 35 largest objects (in angular diameter)
- Telescopes used:
  - Lowell 42 inch (bi-monthly since Dec. 2004)
  - SMARTS 0.9 m at CTIO (monthly to bi-monthly since May 2005)
  - USNO 61 inch (for pre-event refinement)
- Generate offsets to JPL coordinates by fitting an annual-period Fourier series and linear slope

## MIT ECM\* fit: lxion



## Predicting stellar occultations by TNOs

- Astrometric measurements for 35 largest objects (in angular diameter)
- Telescopes used:
  - Lowell 42 inch (bi-monthly since Dec. 2004)
  - SMARTS 0.9 m at CTIO (monthly to bi-monthly since May 2005)
  - USNO 61 inch (for pre-event refinement)
- Generate offsets to JPL coordinates by fitting an annual-period Fourier series and linear slope
- Current focus/refinement is on a list of 9 TNOs + Pluto
  - large in angular diameter
  - currently in high-density star fields
  - range of RAs so observations can be taken all year

### MIT ECM targets and positional errors

|          |              |       |                |                     |                     |                        | MIT ECM        |
|----------|--------------|-------|----------------|---------------------|---------------------|------------------------|----------------|
|          |              |       | $\mathbf{D}^1$ | Radius <sup>2</sup> | Radius <sup>2</sup> | JPL Pos.               | Pos. $Error^3$ |
| Body     | Class        | $V^1$ | (AU)           | (km)                | (")                 | Error <sup>1</sup> (") | Min-max        |
| Pluto    | 3:2 <i>e</i> | 14.0  | 31.0           | 1152                | 0.050               | 0.01                   | 0.009-0.030    |
| Makemake | S            | 16.8  | 52.0           | 750                 | 0.019               | 0.12                   | 0.003-0.007    |
| Eris     | S            | 18.8  | 96.0           | 1300                | 0.019               | 0.15                   | 0.021-0.039    |
| Haumea   | S            | 17.4  | 51.0           | 575                 | 0.015               | 0.11                   | 0.029-0.055    |
| Varuna   | С            | 20.0  | 44.5           | 482                 | 0.015               | 0.17                   | 0.013-0.042    |
| Orcus    | 3:2 <i>e</i> | 19.2  | 48.2           | 474                 | 0.014               | 0.13                   | 0.009-0.032    |
| Quaoar   | С            | 19.1  | 42.3           | 422                 | 0.013               | 0.16                   | 0.029-0.053    |
| Ixion    | 3:2 <i>e</i> | 19.5  | 40.5           | 325                 | 0.011               | 0.26                   | 0.026-0.059    |
| 55638    | 3:2 <i>e</i> | 20.0  | 28.2           | 162                 | 0.008               | 0.28                   | 0.038-0.078    |
| 55636    | S            | 19.6  | 41.2           | <200                | <0.007              | 0.18                   | 0.006-0.055    |
|          |              |       |                |                     |                     |                        |                |

<sup>1</sup> From JPL. <sup>2</sup> From Lowell Obs. database. <sup>3</sup>From MIT ECM models over 1-yr period.

Appulses by Ixion and 55638 observed in 2008 from IRTF (Mauna Kea)

#### • MORIS (MIT Optical Rapid Imaging System) on the IRTF

- similar to our portable POETS systems; high QE, low read noise, readout of a few Hz to a few hundred Hz with minimal deadtime, GPS trigger, various filters
- mounted on side-facing exit window of SpeX

#### Results:

|                | Close        | est approach (a | rcsec)       | Midtime (hh:mm:ss.ss) |                   |                   |
|----------------|--------------|-----------------|--------------|-----------------------|-------------------|-------------------|
| Target.Date    | Predicted    | Observed        | Difference   | Predicted             | Observed          | Difference        |
| lxion.20080507 | 0.170±0.00 9 | 0.218±0.01 6    | 0.048±0.01 8 | 12:06:27±00:00:27     | 12:07:33±00:00:06 | 00:01:06±00:00:27 |
|                | 0.393±0.02 3 | 0.389±0.02 6    | 0.005±0.03 5 | 13:53:15±00:00:41     | 13:55:00±00:00:06 | 00:01:45±00:00:41 |

• Occultation by 55636 in 2009 (Elliot *et al.*, Nature, 17 June 2010)

shift in observing strategy from a handful of sites to dozens



Occultation by 55636 in 2009 (Elliot *et al.,* 2010, Nature, 465,897-900)

- shift in observing strategy from a handful of sites to dozens
- successful observation

#### Results:

|                | Clos         | est approach (a | rcsec)       | Midtime (hh:mm:ss.ss) |                   |                   |  |
|----------------|--------------|-----------------|--------------|-----------------------|-------------------|-------------------|--|
| Target.Date    | Predicted    | Observed        | Difference   | Predicted             | Observed          | Difference        |  |
| lxion.20080507 | 0.170±0.00 9 | 0.218±0.01 6    | 0.048±0.01 8 | 12:06:27±00:00:27     | 12:07:33±00:00:06 | 00:01:06±00:00:27 |  |
|                | 0.393±0.02 3 | 0.389±0.02 6    | 0.005±0.03 5 | 13:53:15±00:00:41     | 13:55:00±00:00:06 | 00:01:45±00:00:41 |  |
|                | 0.059±0.01 5 | 0.0416±0.0002   | 0.017±0.00 2 | 10:30:07±00:00:20     | 10:29:42±00:00:04 | 00:00:20±00:00:20 |  |

#### □ 55636 (2002 TX<sub>300</sub>)

- orbital parameters: *a* = 43 AU, *e* = 0.124, *i* = 25.9<sup>o</sup>
- absolute magnitude:  $H_V = 3.5$
- rotational variability: 0.09 mag over 7.9 h (could be surface feature, shape, or combination)
- Size (radius): upper limits only < 400 km (Spitzer), < 354.5 km (ground-based IR)

corresponding albedo > 0.1 and > 0.19

implies angular diameter of < 0.03"

• spectrum: similar to Charon, deep water ice absorption

Orbit + brightness + spectrum imply Haumea-family object, collisionally fragmented



*Keck image of Haumea system. Credit: Brown et al. ApJ 639:L43, 2006.* 



Artist's concept of Haumea and its moons.



Successful 55636 occultation lightcurves (Elliot et al., Nature, 2010).



*Occultation chords and derived circular figure for 556365.* 

**From two successful chords** (12 non-detections; 7 weathered out)

- size: 143 ± 5 km (circular solution)
- geometric albedo (V): 0.88 <sup>+0.15</sup><sub>-0.06</sub>
- atmosphere: non-existent (3 $\sigma$  upper limit of 2 × 10<sup>15</sup> cm<sup>-3</sup>)
- satellites: none detected

Intriguing dilemma: a surface this old (likely 1 Gyr from collisional formation) should not be so bright!

- Occultation by Varuna in 2010
  - observed from handful of sites; coordinated with others



# SOFIA: the Stratospheric Observatory for Infrared Astronomy



Credit: NASA/Carla Thomas on 18 Dec. 2009.

Modified Boeing 747SP with a 100-inch telescope

# SOFIA: the Stratospheric Observatory for Infrared Astronomy



Modified Boeing 747SP with a 100-inch telescope

# SOFIA: Instruments

First generation instruments for occultation observations:

#### HIPO (High-speed Imaging Photometer for Occultations)

- 0.3–11 microns; can split to obtain two wavelengths simultaneously
- Johnson U, B, V, R, I, & narrow band
- 5.6' x 5.6' field of view; 0.33"/pixel
- full frame readout 2 Hz; up to hundreds of Hz with subframes
- readoise 6e~/pixel
- timed using hardware triggers to precision of a few microseconds

#### FLITECAM (First Light Infrared Test Experiment CAmera)

- 1.0 –5.5 micron imager and grism spectrometer
- J, H, K, Ľ, M, KL, and narrow-band
- full 8' x 8' field of view; 0.48"/pixel
- full frame readout 12 Hz; up to 30kHz with subframes

HIPO and FILTCAM can observe simultaneously using a dichroic beam splitter

# **Near-term expectations**

• Continue astrometic measurement and ECM refinement

increase the target list to add interesting objects

#### Ground-based observations

• How many events? Statistics suggest a few per year

# Hawaii predictions: SNRs

2011-2012 Events HI dark



# Hawaii predictions: event statistics



## **Near-term expectations**

• Continue astrometic measurement and ECM refinement

increase the target list to add interesting objects

#### Ground-based observations

How many events? Statistics suggest a few per year

#### SOFIA observations

- A small number of events during commissioning
- More during full science operations statistics are much higher than for a groundbased site

# SOFIA predictions: SNRs

2011-2012 Events SOFIA range dark



# SOFIA predictions: event statistics



# Conclusions

Stellar occultations provide detailed information about specifically targeted TNOs

 Prediction and observation techniques have become accurate enough for successful observations of increasingly small (and/or distant) objects

 Instrumentation coming online (e.g. MORIS, SOFIA) increases our chances for obtaining excellent data

 In the near future (next few years), we hope to characterize a handful of objects unknown: accurate positions for most TNOs