JWST MIRI

JWST in a nutshell

JWST Transit Capabilities: Instruments (2)

- **NIRCam:** $1 5 \mu m$ images & some spectra
 - Images over 0.7 5 μm Nyquist sampled at 2 and 4 μm
 - $R \sim 1700$ spectra $3 5 \mu m$ (not continuous)
 - K ~ 5 8 bright limit via subarrays, weak lenses, spectra
- NIRSpec: 1 5 μm spectra
 - R=100 (1 setting) and R=2700 (3 settings) spectroscopy with coarse (100 mas) spatial sampling for single or multiple objects
 - Implementing a very wide slit (1.6 arcsec) to eliminate slit modulation
- MIRI: 5 28 μm images & spectra
 - 5 28 μm Imager Nyquist sampled at 7 μm
 - Low Res Spectrograph R~100 λ = 5 10 (14) μ m
 - Med Res R=3000 Integral Field image slicer spectrograph
- Fine Guidance Sensor Tunable Filter (FGS TFI)
 - $-1-5 \ \mu m$ images
 - Has a coronagraph; using masks alone reduces diffraction

MIRI Block Diagram

MIRI European

Consortium

04-2

MIRI Optical System CDR, 6th & 7th December 2006

This document contains proprietary information as stated on the cover page

MIRI & SOFIA: Complimentary Dynamic Range

Objective: Study the inventory and processing of organic matter in protostellar envelopes via absorption spectroscopy.

MIRI Exoplanet Sec. Eclipse Sensitivity

Table 1: Exoplanets 0.1 AU from a G2V star at 15 pc distance

Planet	F1000W R=5	F2100W R=4	LRS@10 µm R=30
1 RJup Itime (hr) S/N=30	0.1	0.1	1
1 R _{Jup} contrast	8E-4	1.5E-3	8E-4
$2~R_\oplus$ Itime (hr) S/N=5	3	4	19
$2 \; R_\oplus \; contrast$	2.7E-5	5E-5	2.7E-5

Table 2: Exoplanets 0.05 AU from a M5V star at 10 pc distance

Planet	F1000W R=5	F2100W R=4	LRS@10 µm R=30
1 R _{Jup} Itime (hr) S/N=30	4.6	0.4	36
1 R _{Jup} contrast	3E-4	2E-3	3E-4
$2~R_\oplus$ Itime (hr) S/N=5	118	11	925
$2 \; R_\oplus \; contrast$	1E-5	7E-5	1E-5

- Planets 0.1 AU from G2 star have 12 day periods and T ~ 890 K
- Planets 0.05 AU from M5 star have 9 day periods and T ~ 290 K
- Integration times are lower limits for secondary eclipse observations

 no systematic noise or overheads included

Spitzer / JWST views of HD 189733b

9 Sep 2009

JWST MIRI - SOFIA

HD 189733b nIR Sec. Eclipse

JWST Exoplanet Observations

HD189733b MIRI LRS R=100 simulation

9

MIRI detection of CO_2 abs. in Super-Earths

- JWST MIRI filters (red boxes, left) can be used to detect deep CO2 absorption in Super-Earth atmospheres (Miller-Ricci 2009 model, left)
- Modelling shows that modest S/N detections possible on several TESSdiscovered planets (Deming et al. 2009).

MIRI and NIRCAM planet imaging detectability

