

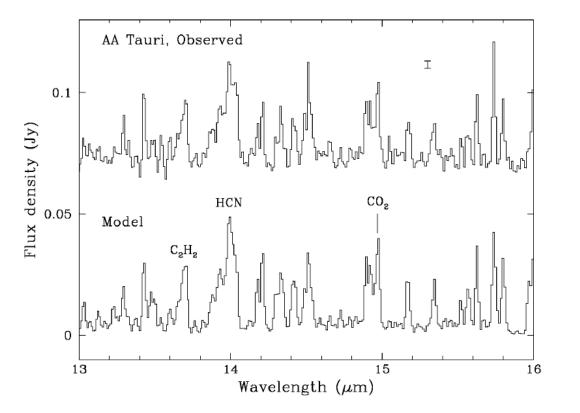
Spitzer and SOFIA

Michael Werner Tom Soifer George Rieke

14 October 2009

Some Areas where Spitzer has Set the Stage for SOFIA (1/2)

Spitzer Area	SOFIA Opportunity	Comments
Protostellar/protoplanetary disk spectroscopy of potentially biogenic molecules	Higher resolution for mass determination, isotopic studies	Many species not accessible from ground; wavelength too short for Herschel. What can ALMA do?
Spatial, spectral dissection of nearby spiral galaxies, including the Magellanic clouds	Spectroscopy of active and quiescent regions of the ISM; isotopic abundace gradients; higher resolution imaging, etc.	Spectra from 5-60um – H2, fine structure lines, CO, etc. may be SOFIA niche. Higher resolution imaging longward of ~50um may not compete well with Herschel
Comets – dust and gas phase studies, including mineralogy and comparison to exoplanet system studies	Gas phase and solid state spectroscopy of all bright comets; approach closer to sun; draw connections to exoplanetary material	Mid-IR key for mineralogy – many molecules of interest not easily accessible from the ground
Debris Disk photometry, imaging, and phenomenology.	Imaging studies of highest surface brightness systems	SOFIA imaging suffers from lower surface brightness sensitivity – may be worth looking at brightest cases, particularly shortward of ~50um
Transit/eclipse photometry of exoplanets – a major discovery area for Spitzer	Unclear but should be tried to get access to full wavelength range	Spitzer's high stability enabled this; see Mark Swain for SOFIA possibilities mww-2 - 10/14/2009


Some Areas where Spitzer has set the Stage for SOFIA (2/2)

Spitzer Area	SOFIA Opportunity	Comments
Mapping and cataloging the infrared emission from the galactic plane from 3.6 to 70um	Systematic but targeted studies of IR dark clouds, filament polarimetry, young clusters, etc. See comment in last line below	Here Spitzer data could enable many, many projects. SOFIA's resolution could be critical in complex regions; polarimetry probably best example of something unique to SOFIA. Spitzer data will allow study of regions and problems other than bright cloud cores
PAH phenomenology	Higher resolution spectroscopy may be informative; search for C60 lines as well	Try looking with higher spatial and spectral resolution in a range of environments. Need to pose the PAH question carefully to gain understanding. Higher resolution spectra important for 7-9um C60 lines.
Low mass star formation has been very systematically studied by Spitzer – time scales, protostellar mineralogy, disk dissipation, etc.	High mass star formation studies to complement Spitzer's work on low mass stars. Spitzer has not done much mapping of the really bright FIR sources studied from KAO	Specific studies could include study of UC HII regions, use SOFIA's resolution to sort out complex structures, searching for circumstellar disks, etc. Note that studying high mass star formation was part of initial GLIMPSE motivation
Massive archive of everything from NEOs to galaxies producing reionization to the IR background	Systematic programs including dozens of objects; may influence science utilization model	Exploitation of archive [and later that of Herschel] will continue to reveal science questions uniquely accessible to 45061A

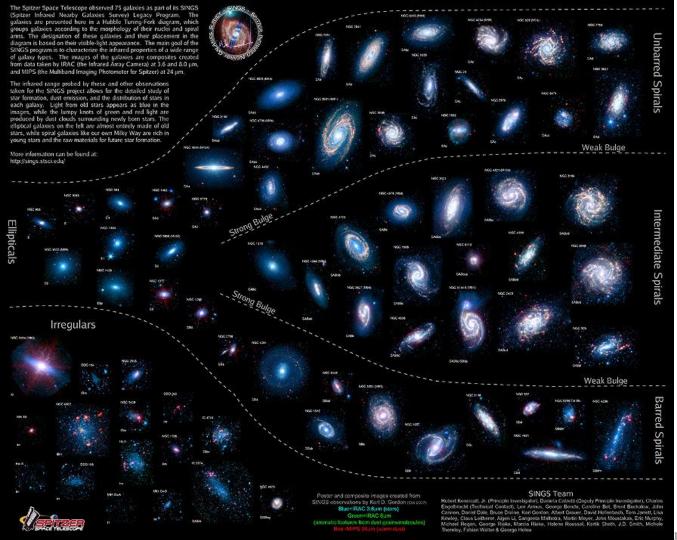
Organic Molecules in a Protoplanetary Disk

Model Fit Shows:

•Gas at temperature ~400-600K

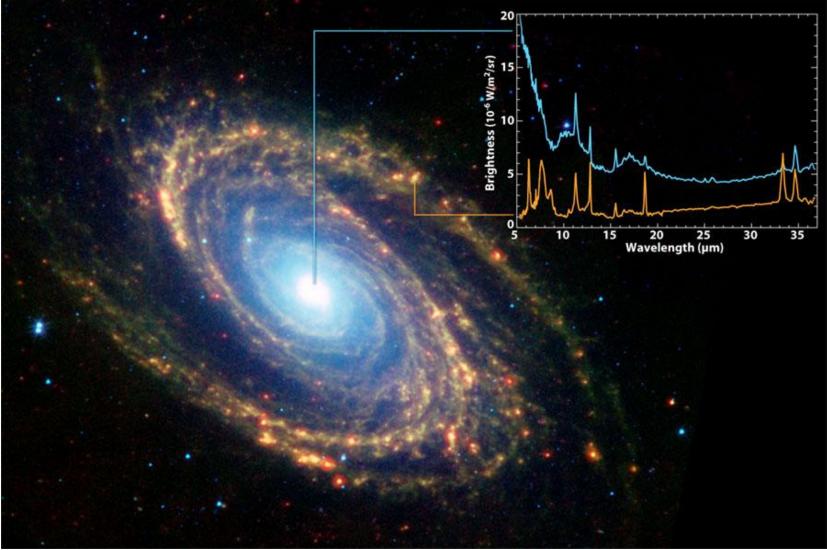
•Emitting region a few astronomical units in size

•Abundances relative to CO increased by order of magnitude


Perhaps we are seeing buildup of organic material in inner regions of a young solar system mww-4 - 6/21/04

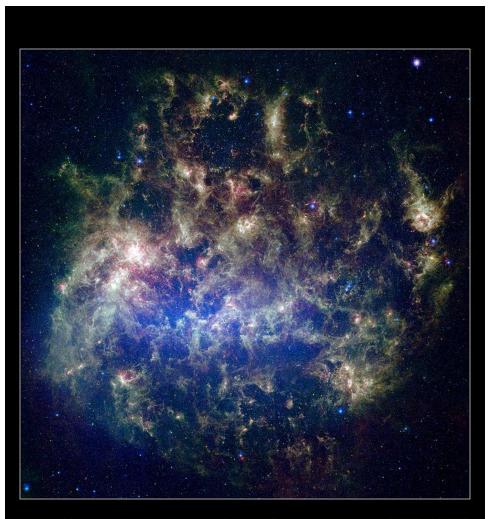
SINGS Tuning Fork Diagram Calls Out for SOFIA Follow-up

The Spitzer Infrared Nearby Galaxies Survey (SINGS) Hubble Tuning-Fork

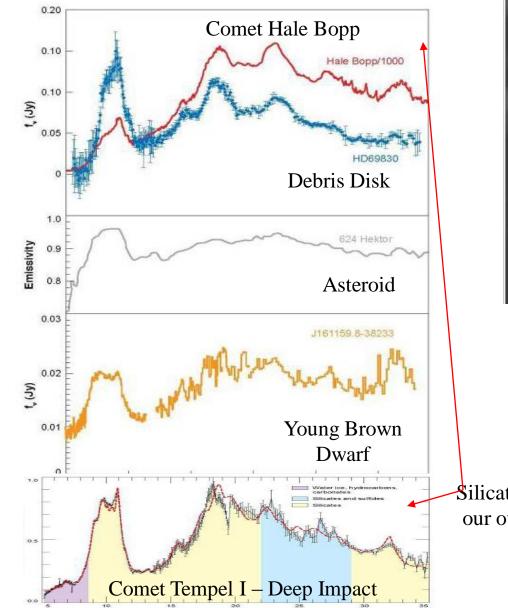


mww-5 - 6/21/04

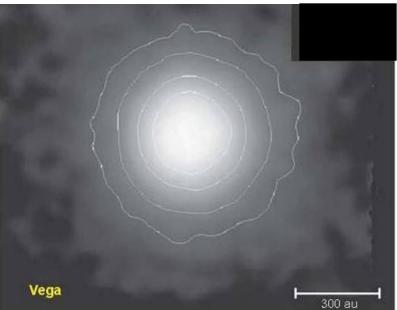
Spitzer Data on M81 with All Three Instruments

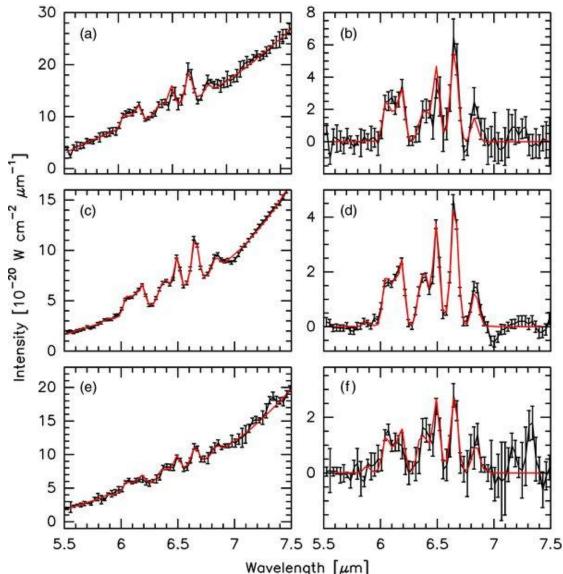


IRAC/MIPS Image of LMC; Significant IRS Studies Also Done

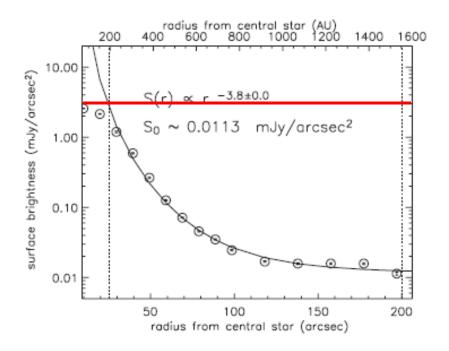

 Large Magellanic Cloud
 Spitzer Space Telescope • IRAC • MIPS

 NASA / JPL-Caltech / M. Meixner (STScI) & the SAGE Legacy Team
 ssc2006-17b


mww-7 - 6/21/04


JPL

Silicate mineralogy strikingly similar in our own solar system and in extrasolar planetary systems


mww-8 - 6/21/04

Gas Phase Studies Should

 This is data from Woodward et al on H2O in a comet

L Can SOFIA Image the Vega Disk at 70um?

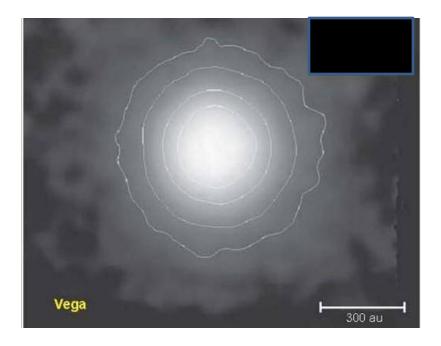
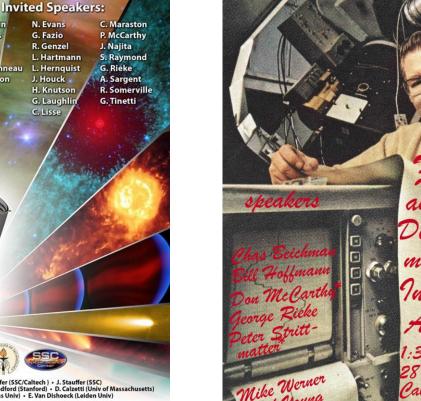


Fig. 7.—Radial profile of the Vega disk at 70 μ m. A power law plus a constant background are used to fit the data points between the two dotted lines. The distribution is found to be consistent with an $r^{-3.8}$ power law.

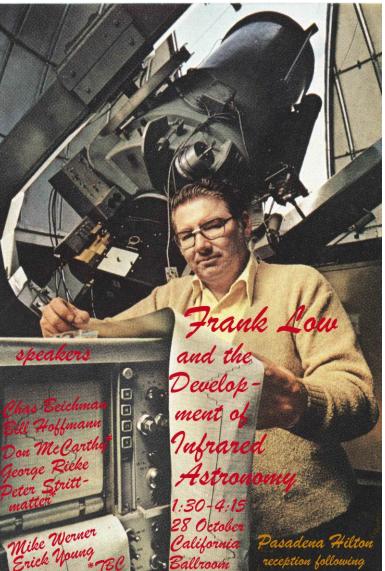
Data points are radial profile for Vega disk from Su et al. Red line is estimated 10 sigma, 900 s. surface brightness sensitivity of SOFIA based on 100 mJy photometric sensitivity

JPLA Few Words from Our Sponsor

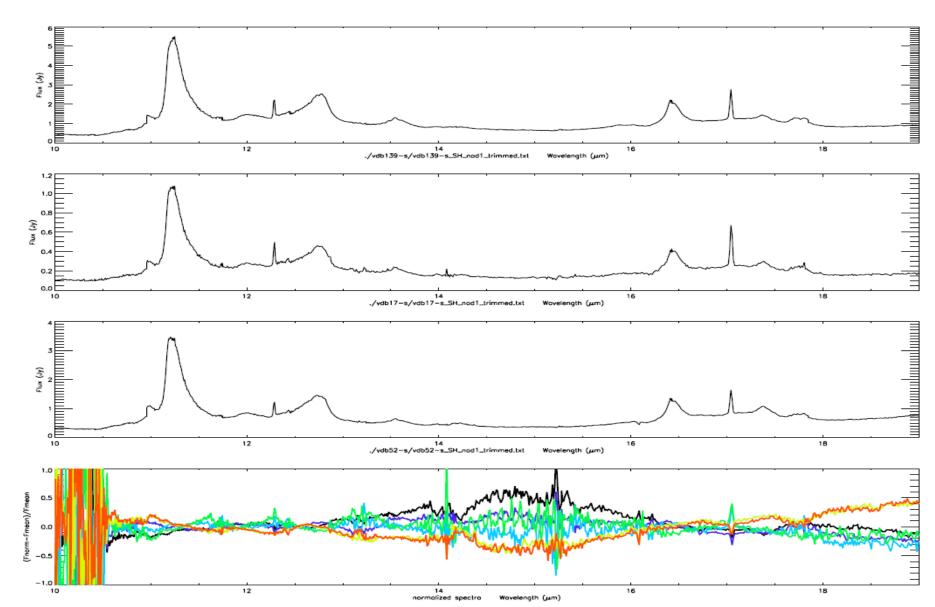

Reionization to Exoplanets: Spitzer's Growing Legacy

Location: Hilton Hotel, Pasadena, CA 26-28 October 2009 Registration Deadlines: Early 15 August 2009 • Late 16 October 2009 http://ssc.spitzer.caltech.edu/mtgs/spitzer2009

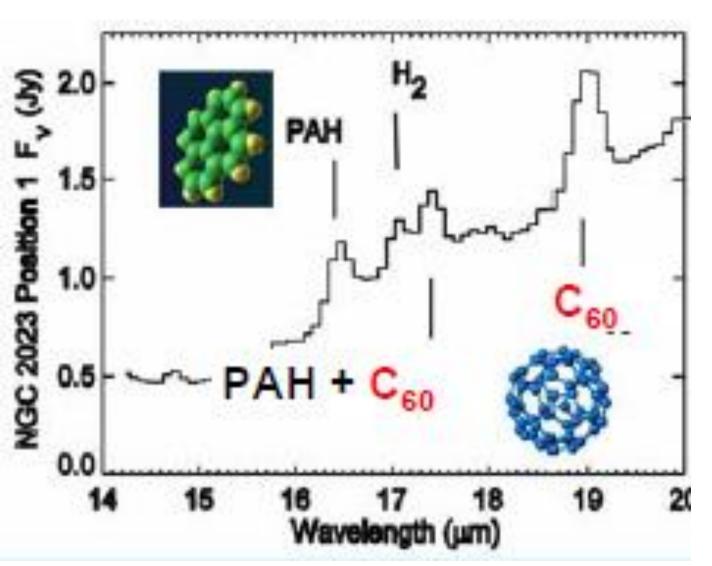
Topics:


- The Early Universe
- The Dusty Universe
- The Galaxy
- Star Formation,
- Exoplanets

B. Benjamin A. Burrows D. Calzetti P. Capak D. Charbonneau L. Hernquist M. Dickinson **B.** Draine R. Ellis

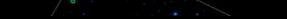


SCIENTIFIC ORGANIZING COMMITTEE: M. Werner (JPL) + B. T. Soifer (SSC/Caltech) + J. Stauffer (SSC) R. Benjamin (Univ of Wisconsin-Whitewater) - T. Bergin (Univ of Michigan) + R. Blandford (Stanford) + D. Calzetti (Univ of Massachusetts) D. Charbonneau (Harvard) + R. Ellis (Caltech) + C. Lisse (Johns Hopkins Univ) + E. Van Dishoeck (Leiden Univ)


LOCAL ORGANIZING COMMITTEE: P. Ogle (SSC) + P. Patterson (IPAC) + G. Bryden (JPL) + M. Castillo (IPAC) + J. Colbert (SSC) + A. Dean (SSC) S. Fajardo-Acosta (SSC) + J. Howell (SSC) + E. Kennedy (IPAC) + S. Laine (SSC) + H. Mycroft (IPAC) + R. Scholey (IPAC) + E. Schre (SSC) H. Scielly (IPAC) + K. Sheth (SSC)

A Spitzer PAH Puzzler: Bright Sources Have Identical Spectra

Shorter wavelength lines at 7 and 8.5um should be detected to confirm identification; SOFIA can help to tease these out of the PAH forest


IRAC/MIPS Survey of the Galactic Plane: Grist for SOFIA's Mill

Structures Like These Cry Out for Polarimetric Exploration

W5

d=2 kpc

Small Green Circles: IR-ex sources, Big Green/Blue Circles: Protostars

24, 8, 4.5 Large Scale Patterns of Low Mass Star Formation Studied by Spitzer Koe

Koenig et al.

Low Mass Protostars Seen In Orion

Can SOFIA make equivalent progress in studying high mass star formation?

mww-17 - 6/21/04