

# AKARI Observations and SOFIA

## Takashi Onaka (University of Tokyo)

### AKARI Mission JAXA, Nagoya-U, U. of Tokyo, NAOJ, .. International collaboration with ESA, IKSGO, & SNU

2009.11.17 SOFIA telecon



# **AKARI satellite**

70cm SiC mirror 180L LHe + cryocoolers on a 700km sunsynchronous polar orbit 18 month cold mission (2006.2-2007.8)

All-sky survey surpasses IRAS database (9, 18, 65, 90, 140, 160µm) + Pointing observations of imaging and spectroscopy in 2-180µm Murakami et al. 2007 PASJ, 59, 369







IRC: Onaka et al. 2007 PASJ 59, S401; Ohyama et al. 2007 PASJ 59, S411 FIS: Kawada et al. 2007 PASJ 59, S389; Kawada et al. 2008 PASJ 60, S389







### **PIXEL SIZE OF IRC/FIS**



# **On-board Instruments**<sup>\*</sup> (Far-Infrared Surveyor) FIS



esa





AKARI 9/18μm IRAS 12/25μm

#### 





## Search for hot debris disks in the MIR all-sky survey Hideaki Fujiwara et al.

Unbiased search in the all-sky survey data for excess at 18µm (Ks-[18] > 0.5 ) in main-sequence stars based on the Tycho-2 spectral type catalog Eye inspection for confusion of surrounding sources

Hot debris disks (excess at ~20µm) indicate dust in ~10AU regions They have a more direct link to planet formation than cool debris disks detected at 60µm IRC All-sky 9µm map

| () Detect                                        | ed debris               | disk     |                    |
|--------------------------------------------------|-------------------------|----------|--------------------|
| Detection of 18 $\mu$ m excess: 14/910 ~ 3.7%    |                         |          |                    |
| (Fujiwara et al. in prep.)                       |                         |          |                    |
| smaller than Spitzer's results at 24µm           |                         |          |                    |
| SU% TOP A (Su et                                 | al. 2006), 0 % TOP 1    | GK (Beid | chman et al. 2006) |
| Spec. Type L                                     | petection at 18 $\mu$ m | Debris   | Freq.(%)           |
| A                                                | 196                     | 15       | 7.7                |
| F                                                | 324                     | 12       | 3.7                |
| G                                                | 173                     | 3        | 1.7                |
| K                                                | 144                     | 2        | 1.4                |
| Μ                                                | 19                      | 0        | 0.0                |
| Total                                            | 856                     | 32       | 3.7                |
| 11 new debris disks discovered                   |                         |          |                    |
| Dependence of the frequency on the spectral type |                         |          |                    |
|                                                  |                         |          |                    |









# **Results: Dust Features**

10 & 20µm features are different from the `standard silicate' lux Density (Jy) features. The peaks are at ~9 & 20-21µm. xcess The spectrum is well accounted for by a combination of silica and amorphous silicates.

The silica fraction (~40%) is high compared to other silica-objects (<15%)



Fig. 2.— Top: The Spitzer/IRS spectrum of HD 15407 and the results of SED fitting with a model. Bottom: The residuals subtracted by the best-fit spectrum model.

**On-going projects with AKAR NIR spectroscopy (2.5 - 5µm)** NIR spectroscopic observations of very red objects F(9mm)/F(Ks) > 2 for |b|>30 (AGN search) (Oyabu et al. in prep.)

NIR spectroscopic observations of red objects for |b|<30 (dusty Galactic objects) (PI. D. Ishihara)



17

# Possible SOFIA Observations

FORCAST MIR spectroscopy of objects selected from MIR all-sky survey & NIR spectroscopy Complementary to AKARI NIR spectroscopy Detection limits are similar (50-100mJy) Hot debris disk candidates show a variety of silicate features, suggesting dust processing in the disk We obtained IRS spectra for some of them, but not all of them Ground-based spectroscopy is affected by atmospheric absorption; Q-band spectroscopy is not sensitive MIR (>30µm) imaging may be interesting, but extended emission is not expected for hot debris disks

### Thank you for your attention

