SOFIA Tele-talk 07/05/23

Surveying the Giant HII Regions of the Milky Way with SOFIA: V. DR7 and K3-50

James Radomski (SOFIA-USRA)

Why massive stars are important?

Reason #1 - Chemical Input

Graphic created by Jennifer Johnson

The Origin of the Solar System Elements

ESA/NASA/AASNova

Why massive stars are important?

Reason #2 - Energetic feedbacks

The enormous massive star feedback can be a critical source to form and maintain the shapes of the environmental GMCs!

Pabst ea 2019

5 h 36 min 5 h 35 min 5 h 34 min 5 h 33 min

Evolutionary sequence of High-mass stars and star clusters (Beuther et al. 2007)

- Cores to stars
- → High-mass starless cores (HMSCs)
- protostar(s) destined to become a high-mass star(s)
- → High-mass protostellar objects (HMPOs) HI regions
- \rightarrow Final stars
- Clumps to clusters
- \rightarrow Massive starless clumps
- → Protoclusters HII regions
- \rightarrow Stellar clusters

→ High-mass cores harboring accreting low/intermediate mass

Two simple stages

- Infrared Quiescent
- Infrared Bright

Giant HII (GHII) regions are...

- well known active massive star forming regions.
- bright across almost all wavelengths.
- only IR bright objects you can recognize easily from external galaxies.

Thus, it is important to study Galactic GHII regions to understand star formation even in external galaxies.

- W51A : one of the most massive Galactic GHII regions (Lim & De Buizer 2019)
- MI7: one of the closest GHII regions in from Sun (Lim, De Buizer & Radomski 2020)
- W49A : the most luminous GHII region of the Milky Way (De Buizer et al 2021)
- DR7 & K3-50 : Galactic GHII regions as the 'edge cases' (De Buizer et al 2022, De Buizer et al 2023)

Blue - 20 μ m, Green - 37 μ m, Red - 70 μ m, White - 3.6 μ m

D~11.1kpc

Blue - 20 μ m, Green - 37 μ m, Red - 70 μ m, White - 3.6 μ m

De Buizer ea 2021

D~7.3kpc Blue - 20 μ m, Green - 37 μ m, Red - 70 μ m, White - 3.6 μ m

De Buizer ea 2023

M17

*MSX 21*µm

Why we need SOFIA?

Angular resolutions of Space/Airborne Telescopes

IRAS ~ 1x4 arcmin MSX ~ 18 arcsec Spitzer-MIPS ~ 6 arcsec SOFIA-FORCAST ~ 3 arcsec

SOFIA FORCAST 20µm

SOFIA FORCAST 37µm

Result 1. We have found an embedded population of MYSOs.

MYSO Candidates

DR7

K3-50

De Buizer ea 2023

12

MYSO Candidates

$L_{\rm obs}$	L_{tot}	A_{v}	
$(\times 10 L_{\odot})$	$(\times 10 L_{\odot})$	(mag.)	
0.35	0.77	19.3	
3.01	13.30	26.5	
9.06	101.57	26.5	
1.61	11.20	58.7	
	$ \begin{array}{c} L_{\rm obs} \\ (\times 10^3 L_{\odot}) \\ 0.35 \\ 3.01 \\ 9.06 \\ 1.61 \end{array} $	$\begin{array}{ccc} L_{\rm obs} & L_{\rm tot} \\ (\times 10^3 L_{\odot}) & (\times 10^3 L_{\odot}) \end{array}$ $\begin{array}{c} 0.35 & 0.77 \\ 3.01 & 13.30 \\ 9.06 & 101.57 \\ 1.61 & 11.20 \end{array}$	$\begin{array}{ccc} L_{\rm obs} & L_{\rm tot} & A_{\nu} \\ (\times 10^3 L_{\odot}) & (\times 10^3 L_{\odot}) & ({\rm mag.}) \end{array}$ $\begin{array}{ccc} 0.35 & 0.77 & 19.3 \\ 3.01 & 13.30 & 26.5 \\ 9.06 & 101.57 & 26.5 \\ 1.61 & 11.20 & 58.7 \end{array}$

De Buizer ea 2

11

5

9

8.0-16.0

8.0-16.0

8.0-12.0

8.0

16.0

8.0

8.4–79.5

1.7-26.5

10.6–78.8

a

Notes

MYSO Candidates

Source	$L_{ m obs} \ (imes 10^3 L_{\odot})$	$L_{ m tot}$ (×10 ³ L_{\odot})	A_{ν} (mag.)	$M_{ m star}$ (M_{\odot})	A_{v} Range (mag.)	$M_{\rm star}$ Range (M_{\odot})	Best Model
K3-50 1	0.70	0.79	0.8	4.0	0.8-31.8	4.0-32.0	6
K3-50 2	1.71	11.66	159.0	8.0	21.0-159.3	8.0-16.0	7
K3-50 3	3.23	9.48	12.6	8.0	2.5-12.6	8.0-8.0	9
K3-50 4	1.25	11.20	100.6	8.0	55.6-100.6	8.0-12.0	6
K3-50 5	5.23	10.84	52.8	8.0	42.4-82.2	8.0-24.0	8
K3-50 6	5.47	457.90	79.5	48.0	12.6-106.0	8.0-64.0	14
K3-50 7	2.53	13.30	53.0	8.0	26.5-75.5	2.0-16.0	16
K3-50 8	6.24	7.70	26.5	4.0	8.4-56.2	4.0-16.0	16
K3-50 C1	159.90	300.82	132.5	24.0	106.0-132.5	24.0-24.0	14
K3-50 C2	89.60	460.33	212.0	32.0	111.3–262.3	24.0-128.0	8

- 8 / 10 (K3-50), 3 / 4 (DR7) SOFIA compact sources are under MYSO criteria.
 - c.f. 41/47 MYSOs from W51A 7 / 16 MYSOs from M17 22 / 24 MYSOs from W49A
- A MYSO in DR7 and 7 in K3-50 have no radio counterparts.
 - c.f. 20 MYSOs in W51A I MYSO in MI7
 - 4 MYSOs in W49A

Likely at their very early stage. Not enough time to expend the Strömgren Spheres.

MYSO MYSO MYSO MYSO MYSO pMYSO MYSO MYSO

Notes

Result 2. We trace the evolutionary states of proto-clusters in GHII regions.

Proto-cluster Evolution

⁽Bertoldi & McKee 1992)

Higher α_{vir} may indicate the later clump evolutionary stages (i.e. more internal feedback makes higher kinetic energy).

Lbol/Mdust

Higher L/M might indicate older clump due to more formed stars and less dust mass (used to make stars).

Lim ea 2019

Proto-cluster Evolution α_{vir} VS. L/M

Lim ea 2019

Proto-cluster Evolution α_{vir} vs. L/M

Proto-cluster Evolution α_{vir} vs. L/M

De Buizer ea 2021

19

Proto-cluster Evolution De Buizer ea 2023 αvir VS. L/M

		Source	M (M_{\odot})	$L (imes 10^4 L_{\odot})$	T _{cold} (K)	T _{warm} (K)	L/M L_{\odot}/M_{\odot}	
		DR7 A	110.9	4.85	65.3	256.7	218.5	
		DR7 B DR7 C	98.7 318.8	4.27 5.68	62.6 55.1	273.6 285.7	89.2	
		DR7 F	62.6	2.50	50.4	274.5	199.8	
Source	$M_{ m vir}$ (M_{\odot})		М (М _⊙)	$L (\times 10^4 L_{\odot})$	T _{cold} (K)	T	warm (K)	L/M L_{\odot}/M_{\odot}
K3-50 A	1993.6		845.2	144	69.0	2	12.4	850.7
K3-50 B	3037.9		659.4	32.3	68.8	2	84.1	244.6
K3-50 C			904.6	36.2	60.2	2	76.0	200.3
K3-50 D			152.4	24.7	69.7	2	66.6	811.3
K3-50 G			27.7	2.33	44.8	3	15.1	421.2

- No proper molecular line data toward DR7.
- Only HCO+ (4-3) data toward K3-50 A and B sources.
- L / M parameters of K3-50 show relatively large spread (200 - 850) while DR7 has similar values across all 4 sources.

This may indicate K3-50 underwent multi-phase star formation activities while DR7 is coeval.

Proto-cluster Evolution De Buizer ea 2023 αvir VS. L/M

- W51A and M17 show various evolutionary stages of porto-cluster thus structures in these GHII regions are not coeval.
- Revealed stellar clusters (MI7) and a LBV candidate (W51A) show the highest Q_{vir} and L/M values.
- All W49A proto-clusters show relatively consistent and L/M values indicating they are more likely coeval.
- The L/M spread of DR7 and K3-50 indicates that DR7 looks to be coeval while K3-50 might not.

Result 3. Additional analyses imply which are genuine GHII regions.

Edge case study Are they genuine GHII regions?

Region	No. Compact Sources	No. Subregions	% Flux in Peak	Highest Mass YSO	Туре
W51A: G49.5-0.4	37	10	20	96	GH II
W49A	24	15	25	128	GH II
M17	16	4	5	64	GH II
W51A: G49.4-0.3	10	5	15	64	GH II
K3-50	10	5	59	48	GH II
DR7	4	1	15	16	Н П?
Sgr D	3	3	85	16	ΗII
W42	2	1	50	32	ΗII

- GHII region (in addition to the Lyman continuum cutoff $N_{LyC} = 10^{50} \text{ s}^{-1}$).
 - The number of compact sources
 - The number of extended sources (sub-regions) 2.
 - The peak flux ratio (peak source flus / total flux)
 - 4. The mass of the most massive YSO in the area
- K3-50 is likely a GHII region and DR7 might not.

De Buizer ea 2023

- In De Buizer et al. 2022, we argued the four observational criteria to be considered as a

Summary

- FORCAST 20, 25 & 37μm imaging survey toward Galactic GHII regions has been executed.
- The SOFIA data revealed a previously hidden population of MYSOs and gave us better understanding the physical nature of several already known sources.
- Independent evolutionary analyses traces unique histories of stellar cluster formation in GHII regions.
- Analyses on 'edge case GHII regions' (K3-50 & DR7) indicate K3-50 is likely GHII while DR7 is not.

Region	No. Compact Sources	No. Subregions	% Flux in Peak	Highest Mass YSO	Туре
W51A: G49.5-0.4	37	10	20	96	GH II
W49A	24	15	25	128	GH II
M17	16	4	5	64	GH II
W51A: G49.4-0.3	10	5	15	64	GH II
K3-50	10	5	59	48	GH II?
DR7	4	1	15	16	Н П?
Sgr D	3	3	85	16	НП
W42	2	1	50	32	НП

