

FORCAST: Science Capabilities and Data Products

William D. Vacca

Faint Object infraRed Camera for the SOFIA Telescope (FORCAST)

- Facility Instrument
- PI: Terry Herter (Cornell)
- Wide field (3.4' x 3.2' FOV) dual channel
 5-40 μm camera and spectrograph
- SWC Si:As BIB 256x256 array for 5-25 μm, 0.79"x0.75"pix, rebinned to 0.768" square
- LWC Si:Sb BIB 256x256 array for 25-40
 μm, 0.79"x0.75"pix, rebinned to 0.768"
 square
- 4 Grisms with 2 long slits provide low resolution (R~70-300) spectroscopy over 5-40 μm
- 2 Cross dispersed grisms with 1 short slit provides moderate resolution (R^{\sim} 800-1200) over 5-14 μm

FORCAST Filter Transmission Profiles

- The dichroic is designed to transmit light at wavelengths greater than 26 microns, and reflect light at less than 26 microns
- Dual channel mode allows simultaneous imaging at two wavelengths
- However, there is decreased throughput compared to single channel mode (60-85% in SWC; 40% in LWC)

Table 2: FORCAST Filter Characteristics

Channel	$\lambda_{ ext{eff}} \ (\mu ext{m})$	$\Delta\lambda$ $(\mu\mathrm{m})$	Imaging FWHM (")	Spectral Features of Note
SWC	$6.4 \\ 6.6 \\ 7.7$	$0.14 \\ 0.24 \\ 0.47$	3.0 3.5 2.9 3.5 2.7 3.5	6.3µm PAH feature Continuum reference for PAH 7.7µm PAH feature
	11.1 19.7 24.2	0.95 5.5 2.9	2.7 3.6 2.9 3.8 3.3 4.0	N-band substitute (11.3µm PAH) Q-band sub, Am. Silicate feature 24.3µm [Ne V] line
LWC	31.5 33.6 34.8 37.1	5.7 1.9 3.8 3.3	$ \begin{array}{rrr} 3.4 & 4.3 \\ - & 4.5 \\ 3.6 & 4.5 \\ 3.5 & 4.7 \end{array} $	33.5µm [S III] line Crystalline Silicate feature

Meas. FWHM values for 2 values of the telescope pointing stability (jitter): 1.25" and 2.1"

Imaging Sensitivity (present arrays)

- S/N=4 in 900s, 41000 feet, single channel mode; larger limiting fluxes with dichroic
- Altitude/water vapor affect sensitivity more in the LWC
- SITE, the online integration time estimator, can be used to estimate exposure times

FORCAST grism design overview: layout

FORCAST Grisms and Slits

Grism	Wavelength	Slit	Resolving Power				
Long Slit Spectroscopy in the Short Wavelength Camera							
G1	4.7-7.8 μm	2.4"x192"	200				
		4.7" x192"	100				
G3	8.4-13.7 µm	2.4" x192"	300				
		4.7" x192"	150				
Cross Dispersed Spectroscopy in the Short Wavelength Camera							
G2xG1	4.7-7.8 μm	2.4"x11.25"	1200				
G4xG3	8.4-13.7 µm	2.4"x11.25"	800				
Long Slit Spectroscopy in the Long Wavelength Camera							
G5	17.6-27.7μm	2.4"x192"	140				
		4.7" x192"	70				
G6	28.7-37.1μm	2.4" x192"	220				
		4.7" x192"	110				

Notes:

- Grisms have not yet been commissioned; Cycle 1 observations are shared risk
- Grism spectroscopy in Cycle 1 available only in single-channel mode
- There is NO field de-rotator, so orientation of slit on sky is dependent on flight plan because SOFIA is an Alt-Az telescope
- Due to limits in telescope rotation, field orientation will rotate between "LOS Rewinds"

Spectral Features of Interest

Grism spectral formats

interference fringes

Short slit (XD) modes

S/N=4 in 900s at 41000 feet (7μm water vapor)

Chop/Nod Technique

- MIR observations are completely background (sky+telescope+instrument) limited
 - Background can be $>10^{4-6}$ times brighter than most sources
 - Detector wells can fill in 1-100 msec
- MIR background varies rapidly (order of less than a few sec)
- To subtract majority of the background the secondary is tilted between onsource and off-source positions (chopping) at a rapid rate (~few Hz)
- However, chopping introduces small additional offsets due to the different optical paths for the beams in the two chop positions
- To remove background offset, telescope is moved to another position (nodding) and the chop is repeated
 - Nods on a timescale of ~5-30 sec per nod position
- The two images from the chop positions are subtracted, and the two resulting chop-subtracted images from the two nod positions are subtracted
 - This double-differencing removes all background contributions
- One must ALWAYS chop and nod for FORCAST observations
- There are three types of chop/nod strategies for FORCAST imaging:
 - Nod_Match_Chop (NMC, symmetric)
 - Nod_Perp_Chop (NPC, symmetric)
 - C2NC2 (asymmetric)

Nod_Perp_Chop (Symmetric Chop) Mode:

Pointed observations of extended sources

Large HII region example C2NC2 mode

Note: There is NO field de-rotator, so orientation of slit on sky is dependent on flight plan and cannot be specified by observer *a priori*

Data Reduction Pipeline (DRIP):

Imaging pipeline:

- **clean**: remove bad pixels
- **droop**: detector correction for bright sources
- **⇒** *jailbar*: remove pattern noise
- **linearize**: detector non-linearity correction
- **stack**: background subtraction using chop/nod sets
- **undistort**: distortion correction and rotate N up, E left
- merge: combine ('fold') stacked frames
- **co-add**: combine dithered merged frames
- fluxcal: using theoretical spectra of calibration stars, ATRAN models, and instrument throughput curves (good to ~20%)

Additional pipeline steps for grism spectroscopy:

- **spectral extraction**: (optimal or sum columns)
- defringe: if needed after flatfield correction (e.g. low S/N)
- wavecal: apply pre-determined polynomial fit to telluric/nebular lines
- telluric: using observed telluric spectra, pwv data, and ATRAN models
- fluxcal: using observed spectra of flux calibration stars
- **save**: extracted and calibrated spectra, any specified intermediate data set

Backup Slides

FORCAST Filter Profiles

SOFIA : 41000 ft, 7.3 μm PWV, 45° ZA

Mauna Kea: 13800 ft, 3.4 mm PWV, 45° ZA

Nod_Match_Chop (Symmetric Chop) Mode:

Grism Observing Modes: NMC

Grism Observing Modes: CAS, NAS

Grism Observing Modes: C2NC2

Raw file tin propinsi k NPC Mode

Undistorted

