

FLITECAM

AAS Meeting, Anchorage, Alaska, June 2012

lan McLean
(Principal Investigator)

UCLA Infrared Laboratory
University of California, Los Angeles

FLITECAM - First Flight

Sunset, Thursday October 13, 2011 – Dryden Aircraft Operations Facility, Palmdale, CA

The Team

Photos by Chris Johnson, IRLab

(R·I·T)

What is FLITECAM?

- FLITECAM is a camera and spectrometer for 1-5 microns.
- **Detector:** the 1 megapixel (1024x1024) InSb (ALADDIN III).
- Image Scale: ~0.475 arcsec per pixel.
- **Filters**: JHKLM broad-band and selected narrow-bands (1%-4%).
- **Spectroscopy:** three direct-ruled KRS5 grisms and an aperture mask with a pair of long slits; either 1" or 2" in width and each 60" in length.
- Resolving power: R~1,800 for the 1" slit.
- High-speed "movie mode" for occultations; and pupil-viewing mode.
- FLITECAM can be stand-alone or co-mounted with HIPO.
- Astronomical observing requests (scripts) and a real-time data reduction pipeline (DRP) for dithered image patterns demonstrated.
- ✓ McLean, I. S. et al. 2006, Proc. SPIE, 6269, 168.
- ✓ Smith, E.C.D. & McLean, I. S. 2008, Ap. J., 676, 408.

Layout for Imaging and Spectroscopy

InSb Detector Format: 1024 x 1024 pixels Pixel size on sky: 0.475" x 0.475"

The detector has poor performance in the corners.

FLITECAM FILTER SET

Filter Wheel 1	Filter Wheel 2		
blank/dark (77 K)	Pupil Viewing lens		
open	Open		
J	Paschen-alpha (1.88 μm)		
H	A grism – spectroscopy		
K	Paschen-alpha (continuum 1.9 μm)		
\mathbf{L}'	Narrow Band L (3.6 µm)		
${f L}$	B grism – spectroscopy		
M	Ice (3.08 μm)		
Hwide	PAH (3.29 μm)		
Kwide	Narrow Band M (4.6 μm)		
Klong	C grism – spectroscopy		
L&M	N/A		

FLITECAM FILTER PASSBANDS

FLITECAM Imaging Filters 1.0 **PAH** lce. Pa α $Pa \alpha$ 8.0 M_n Cont Transmission Hwide 0.6 K_{wide} L&M K_{long} 0.4 0.2 0.0 2 3 5 6 Wavelength (µm)

Order-sorting filter (OSF) passbands

Start, Center and End wavelengths for each passband are given in microns

Grism	lines/mm	Order (m)	OSF	Start	Center	End
А	162.75	1	LM	4.395	4.96	5.533
А	162.75	2	Klong	2.216	2.5	2.784
А	162.75	3	Hwide	1.497	1.69	1.877
В	217	1	LM	3.307	3.73	4.16
В	217	2	Hwide	1.649	1.86	2.076
В	217	3	J	1.14	1.28	1.424
С	130.2	2	LM	2.756	3.11	3.467
С	130.2	3	Kwide	1.872	2.11	2.346
С	130.2	4	Н	1.445	1.62	1.801

Spectral coverage is displayed pictorially in the next slide.

FLITECAM GRISM SPECTRAL COVERAGE

FIRST FLIGHT - GOALS

Installed October 2011 on SOFIA in "FLIPO" configuration:

- > HIPO and FLITECAM co-mounted; reflected light to FLITECAM
- > Warm optics in front of FLITECAM window; dichroic and folding flat
- ➤ Mainly for support of <u>SOFIA Characterization And Integration (SCAI)</u>
- > Some partial FLITECAM commissioning if time permits
- Four flights achieved in October 2011

Tests:

- ➤ Imaging in most filters full-array and sub-array modes; dither patterns
- > Spectroscopy observations used both low and high resolution slits
- Gyro drift observations
- > Emissivity tests
- > Engine exhaust tests
- ➤ Image size as a function of wavelength
- > Throughput and backgrounds

SCAI FLIGHT RESULTS

Unable to complete some critical tests because:

- Detector electronics damaged when cabin overheated during aircraft wash; *lost one quadrant of detector for all SCAI flights*.
- Instrument/Observatory interface problems made slit-nodding and dither pattern execution unreliable; sometimes lost pointing during telescope Line-Of-Sight (LOS) Resets.
- Backgrounds higher than expected; partly due to emissivity of FLIPO configuration; also due to internal effects after filter distribution was changed.
- > Sensitivity as expected in J, H and K; can't confirm L and M yet.
- > Performance at Paschen-alpha very encouraging.
- ➤ Best image size as function of wavelength occurred ~3 microns.
- ➤ Clear evidence of image jitter in cross-elevation direction.
- \triangleright Thermal emission due to engine exhaust evident for el < 35°

Throughput and Image Quality Tests

Zeropoints from standard stars consistent with ground-based results for J, H and K bands.

Best images were seen around 3 microns with FWHM ~3.0"

Image elongation seen in cross-elevation direction; mainly secondary mirror motion excited by wind on a "baffle plate".

STATUS AND PLANS

- * FLITECAM is back in the Lab at UCLA for refurbishment.
- * Missing detector quadrant repaired; protocols now in place to prevent over-heating of aircraft cabin when instruments in use.
- Software enhancements under way; pending new releases of SOFIA MCCS or telescope control software. *Major activity is to improve pointing and software interaction*.
- * Baffle plate will be removed for next flights; possibly add an improved beamsplitter and SI blower for cooler fore-optics.
- * Experiments under way to track down internal light leaks and eliminate excess thermal background
- * FLITECAM (stand-alone) commissioning not scheduled until late 2012 or early 2013. FLITECAM will be available for shared-risk observing.

Images using the 1% Paschen-alpha filter

Thank you

