German Receiver for Astronomy at THz Frequencies

Nodular dual-channel heterodyne receiver for high-resolution spectroscopy with SOFIA

ATM 1-5 THz, 14 km altitude

GREAT - the Consortium

PI-Instrument funded and developed by

MPIfR KOSMA

MPS DLR-Pf

□ MPI Radioastronomie (2.7 THz channel)

- R. Güsten (PI)
- S. Heyminck (system engineer)
- B. Klein (FFT spectrometer)
- I. Camara, T. Klein (2.7 THz LO)

Univ. zu Köln, KOSMA (1.4/1.9THz channels)

- J. Stutzki (Co-PI)
- U. Graf (1.4 &1.9THz LO, Optics)
- > K. Jacobs (HEB mixers up to 2.7 THz)
- R. Schieder (array-AOS)

DLR Planetenforschung (4.7 THz channel)

> H-W. Hübers (Co-PI: 4.7 THz HEB, IF, cal unit)

MPI Sonnensystemforschung

> P. Hartogh et al. (CO-PI: CTS)

Configuration - overview

Channel		Frequencies [THz]	Lines of interest
low-frequency	L1 a,b	1.25 – 1.50	[NII], CO series, OD, HCN, H ₂ D ⁺
low-frequency	L2 a,b	1.81 – 1.91	NH ₃ , OH, CO(16-15), [CII]
mid-frequency	M a,b	2.5, 2.7	ОН(² П _{3/2}), HD
high-frequency	Н	4.7	[OI]

two out of the 4 cryostats can be operated simultaneously

- all channel combinations are possible
 - the actual flight configuration is science driven (within our operational limitations)

channel availability

- > all of low-frequency channels operational (baseline for Basic Science)
 - have been flown routinely now since April
- mid frequency channels (under development)
 - engineering flight with 2.5 THz LO today
- high-frequency channel (commissioning foreseen 2012/13)

GREAT installed aboard SOFIA

system performance: L#1 a,b

SSB receiver noise performance measured @ 1267GHz

Above: DSB receiver temperature of the L1a,b bands

Parameter	baseline	goal	achieved	
RF tuning [GHz]		1250 -15	30	
Rx noise (DSB) [K]	2000	1400	1200 -1400	
IF bandwidth [GHz]	0.6	4	1.2+	
stability, spectr. [s]	>10	>100	100+	

Note: trade-off IF bandwidth vs. stability (as with HIFI)

MPIfR KOSMA MPS DLR-Pf

system performance: L#2a

Above: SSB receiver noise performance measured @ 1.9 THz

MPIfR KOSMA

MPS DLR-Pf

Above: DSB receiver temperatures across the L #2 band

Parameter	baseline	goal	achieved
RF tuning [GHz]		1810 -19	20
Rx noise (DSB) [K]	2500	1500	1300 -1800
IF bandwidth [GHz]	0.6	4	1.2+
stability, spectr. [s]	>10	>100	100+

GREAT offers a suite of back-ends, operated in parallel

Back-ends	Width [GHz]	Resolution ^(#) [MHz]	Provided by
AOS: acousto-optical spectrometer array	4 x 1.00	1.6	KOSMA
AFFTS: Fast Fourier Transform spectrometer	2 x 1.80	0.255	MPIfR
XFFTS: ibid, latest technologies	2 x 2.50	0.076	MPIfR

Note: (#) spectral resolution is measured as equivalent noise bandwidth, the 3 dB bandwidth is generally smaller.

R.Güsten

The modular design allows changing

- - between in-band frequencies within minutes, in flight

configurations (channels) between flights

- SOFIA Telescope
- HP beam widths: 22" (1.4) and 16 " (1.9 THz)
- co-aligned channels, simultaneously
- **GREAT** operates with diffraction limited optics

GREAT operation

Cal Unit

Dewar 1

Dewar 2

Grid

Martin-Puplett Diplexer

- classical observing mode: telescope position switching
- preferred for compact objects: chopping with secondary
 - dual beam switching with 1-2 Hz, throw up to several arcmins
- advised for extended structures: "on-the-fly" scanning
 - due to excellent Allan Variance stability times of overall system

GREAT observations can be executed as

- single pointed
- raster map
- on-the-fly

- GREAT is available to SOFIA communities in collaboration
- GREAT as PI instrument operates in service mode only, handling of the observations is by the GREAT team
 - during BS2 successful PIs have been invited to join "their" flight
- observations are executed in the environment of "KOSMA control" via observing scripts only
 - preparation of set-up is supported by USRA/DSI (and GREAT)
- GREAT delivers calibrated data in standard CLASS format and raw data in FITS format

GREAT detects first photons

MPIfR KOSMA MPS DLR-Pf

On 1st April 2011, GREAT successfully concluded its commissioning flight

- Short & Basic Science projects covered a wide range of astrophysical topics, from extragalactic to planetary atmospheres
 - > 23 science projects (G+US) have been executed so far
 - additional 7 planned for this week's flights
 - most of data has been pre-released to PI (one pending)
 - final release of data within next 2-3 weeks (ex new flights)
- overall BS2 was amazingly successful (shared risk operation)
 but every flight had new challenges, new surprises
- publication in A&A special volume has been arranged

□ the calibration of GREAT spectra involves several steps

- the temperature scale is defined against internal calibration loads, providing ambient & cold (LN) references
- the atmospheric absorption is then fit frequency dependent with appropriate models of the high atmosphere (challenging)

Atmospheric transmission at 41 kft flight altitude and excellent 10 μm PVW at the [CII] frequency

[see the GREAT time estimator on the DSI web pages]

finally, the coupling of the GREAT beam to the astronomical object was determined by observations of Mars & Jupiter

RJ Temperatures of Jupiter at FIR wavelengths [Model by (ESA2) Rafael Moreno)]

the so determined GREAT beam coupling efficiency 0.57 compares very well with calculated figure for SOFIA optics

while operating GREAT baseline configurations routinely now
 GREAT as a PI instrument will constantly be upgraded with newest technologies
 improving performance and bandwidth in the low frequency channels
 adding more frequency bands (M-channel in 2012, H-channel 2012/13)

upGREAT: the extension of the instrument into a compact heterodyne array will operate 14 pixels at 1.9-2.5 THz and 7 pixels at 4.7 THz (2014)