

An Introduction to FORCAST

James M. De Buizer SOFIA Instrument Scientist

-

FORCAST DESIGN

Cryostat

- "Clam-shell" cryostat design
 - Cooled with a dual liquid nitrogen and liquid helium can design
- Most optical elements near 77K, detectors at 4K
- Cryogen hold time:
 ~3 days

Optical Bench

- Window made of CsI (88% throughput from 0.6-40µm)
- Aperture wheel holds slits for spectroscopy
- Up to 10 filters or grisms can be used per channel

FORCAST (present) Arrays

SWC

- 256x256 pixel Si:As BIB array
- Optimized for 5-25
 micron observations

LWC

- 256x256 pixel Si:Sb BIB array
- Optimized for 25-40
 micron observations

FORCAST (present) Arrays

- Both arrays are 256x256 pixels, each 50μm square
- However, there is some internal optical distortion in FORCAST:
 - Pixel scale (x) = 0.787''
 - Pixel scale (y) = 0.745''
- Actual FoV is 201"x191" (3.4'x3.2'), pixel scale is 0.768" when rebinned Upgraded arrays 512² pixels- FoVs will likely be comparable (i.e. ~3'x~3')

IMAGING WITH FORCAST

Filters and Dichroic

 The dichroic is designed to transmit light at wavelengths greater than 25 microns, and reflect light less than 25 microns

Filters and Dichroic

Channel	$rac{\lambda_{ ext{eff}}}{(\mu ext{m})}$	$\Delta\lambda\ (\mu{ m m})$	
SWC	6.4 6.6 7.7	$0.14 \\ 0.24 \\ 0.47$	~60%
	11.1 19.7 24.2	$0.95 \\ 5.5 \\ 2.9$	~85%
LWC	31.5 33.6 34.8 37.1	$5.7 \\ 1.9 \\ 3.8 \\ 3.3$	~40%

- Dual channel mode allows simultaneous imaging at two wavelengths
- However, there is decreased throughput compared to single channel mode

Filters and Dichroic

	$\lambda_{ ext{eff}}$	$\Delta\lambda$	
Channel	(μm)	(μm)	Spectral Features of Note
SWC	6.4	0.14	6.3µm PAH feature
	6.6	0.24	Continuum reference for PAH
	7.7	0.47	7.7µm PAH feature
	11.1	0.95	N-band substitute (11.3µm PAH)
	19.7	5.5	Q-band sub, Am. Silicate feature
	24.2	2.9	24.3µm [Ne V] line
LWC	31.5	5.7	
	33.6	1.9	33.5µm [S III] line
	34.8	3.8	Crystalline Silicate feature
	37.1	3.3	

Spatial Resolution

- Telescope jitter causes image quality at all wavelengths to degrade (chart shows 1.25" rms)
- Telescope jitter is expected to improve
- FORCAST is designed to be Nyquist sampled at greater than ~17 microns under diffraction-limit
- Further discussion of image quality will be presented in the next FORCAST talk

- S/N=4 in 900s, single channel mode (worse with dichroic)
- Altitude/water vapor affect sensitivity more in the LWC
- In preparing your FORCAST observations, you can use SITE, the online integration time estimator
- Additionally, there are substantial overheads that must be accounted for which depend on observing mode (see next FORCAST talk)

SPECTROSCOPY WITH FORCAST

Grisms and Slits

Grism	Wavelength	Slit	Resolving Power			
Long Slit Spectroscopy in the Short Wavelength Camera						
G1	4.7-7.8 μm	2.4"x191"	200			
		4.7" x191"	100			
G3	8.4-13.7 μm	2.4" x191"	300			
	1999	4.7" x191"	150			
Cross Dispersed Spectroscopy in the Short Wavelength Camera						
G2xG1	4.7-7.8 μm	2.4"x11.2"	1200			
G4xG3	8.4-13.7 μm	2.4"x11.2"	800			
Long Slit Spectroscopy in the Long Wavelength Camera						
G5	17.6-27.7µm	2.4"x191"	140			
		4.7" x191"	70			
G6	28.7-37.1µm	2.4" x191"	220			
	8:E18	4.7" x191"	110			

Spectral Features of Interest

Spectroscopic Sensitivity (present arrays)

- S/N=4 in 900s (7µm water vapor)
- In preparing your FORCAST spectroscopy observations, SITE will not be available for Cycle 1 CfP (a tutorial will be available)