

FLITECAM

November 8, 2011

Ian McLean (Principal Investigator)

UCLA Infrared Laboratory University of California, Los Angeles

 (\mathbf{e})

(C)

TOPICS

Overview Instrument Description Observing Modes Commissioning Plans CfP Availability

(-

(C)

(R-1-T)

What is FLITECAM?

- FLITECAM is an infrared *camera* and *spectrometer for 1-5 microns*
- 1 megapixel (1024x1024) InSb (ALADDIN III) detector array, large refractive optics, FOV ~8 arc minutes in diameter, scale ~0.5 arcsec per pixel.
- JHKLM broad-band filters and selected narrow-band filters are available.
- Collimated beam ~26 mm diameter; low resolution spectroscopic mode available with direct-ruled KRS5 grisms; aperture mask with a pair of long slits, either 1" or 2" in width and each 60" in length; R~1800 and 900 respectively.
- The instrument is cooled by a liquid helium/liquid nitrogen cryostat.

3

- FLITECAM was partially commissioned using the 3-m Shane telescope at Lick Observatory, where the f/17 focus provides almost the same scale as SOFIA.
- Astronomical observing requests (scripts) and a real-time data reduction pipeline (DRP) for dithered image patterns have been demonstrated.
- See also: McLean, I. S. *et al.* 2006, Proc. SPIE, 6269, 168; Smith, E.C.D. & McLean, I.
 S. 2008, Ap. J., 676, 408.

(RIT)

Summary for Imaging and Spectroscopy

InSb Detector Format: 1024 x 1024 pixels Pixel size on sky: 0.475" x 0.475"

DŚI

The detector has poor performance in the corners.

(C)

USRA

The insert shows how the Pupil-Viewing mode is created. The singlet lens in the filter wheel is sufficient to create a pupil image, but the doublet on a slide mechanism gives a x2 magnification.

Optical Design

> Photons enter the vacuum-cryogenic chamber through a window of CaF2 and come to a focus at the Aperture stop.

 \blacktriangleright The beam is collimated by a triplet of ZnS. BaF2 and LiF and then folded into a compact geometry by four flat mirrors.

 \blacktriangleright A pupil image is formed at the entrance into a double filter wheel.

> After the fourth folding flat a camera lens group working at about f/4.7 re-images the aperture onto the 1024 x 1024 pixel array of the ALADDIN III InSb detector (Raytheon) which has 27-micron pixels.

 \blacktriangleright The camera has five elements consisting of BaF2, ZnSe, LiF, ZnS and ZnSe.

RIT

DSI

Mechanical Layout

(R-I-T)

FLITECAM FILTER SET

Filter Wheel 1	Filter Wheel 2		
blank/dark (77 K)	Pupil Viewing lens		
open	Open		
J	Paschen-alpha (1.88 µm)		
Н	A grism – spectroscopy		
K	Paschen-alpha continuum)		
L'	Narrow Band L (3.6 µm)		
L	B grism – spectroscopy		
Μ	Ice (3.08 μm)		
Hwide	PAH (3.29 μm)		
Kwide	Narrow Band M (4.6 µm)		
Klong	C grism – spectroscopy		
L&M	N/A		

()

(ā)

Imaging Mode

- The FLITECAM optics were not really designed to cope with the enlarged field of view
- Comatic flare degrades the image quality to worse than ~2 arcsec FWHM beyond a radius of 2.8 arcmin from the center of the field.
- The central area produces excellent images

M5 - H band

Coma (elongated images) around edge of field

(E)

(R-1-T)

Ground-based Commissioning at Lick Observatory

Center: the Orion Nebula reduced by the FLITECAM Data Reduction Pipeline and combined into a 3color composite. The image of the Orion Bar (bottom left) was obtained using a narrow-band filter centered on the 3.3 µm PAH feature; a 512 x 512 sub-array was used to improve readout time. Apart from the JHK color composite, the results are as-seen at the telescope.

USRA

Ground-based Commissioning at Lick Observatory

DŜI

Orion Nebula

FORCAST image at 19 and 37 microns with SOFIA

Spitzer image of same region of Orion. Pink = 8 micron emission from PAHs. Good correspondence with FLITECAM.

RIT

Order-sorting filter (OSF) passbands

Start, Center and End wavelengths for each passband are given in microns

Grism	lines/mm	Order (m)	OSF	Start	Center	End
А	162.75	1	LM	4.395	4.96	5.533
A	162.75	2	Klong	2.216	2.5	2.784
A	162.75	3	Hwide	1.497	1.69	1.877
В	217	1	LM	3.307	3.73	4.16
В	217	2	Hwide	1.649	1.86	2.076
В	217	3	J	1.14	1.28	1.424
С	130.2	2	LM	2.756	3.11	3.467
С	130.2	3	Kwide	1.872	2.11	2.346
С	130.2	4	Н	1.445	1.62	1.801

DŚ

 (\mathfrak{S})

(-

Ground-based Commissioning at Lick Observatory

Sub-array and Movie Mode

1.650micron Filter

Full Frame 1024x1024 Image

20 Co-Adds 0.3 second Integration

Minimum 0.3 second Integration Full Frame 1.650micron Filter

Sub-Array 256x256 Image

50 Co-Adds, 0.03 second Integration

Minimum 0.03 second Integration 256x256 Sub-Array

15

(RIT)

Predicted Sensitivity

- Point source sensitivity (SNR = 4 in 900 s) for FWHM = 3.5 asec to 1.5 asec
- Telescope at 240 K and 15 % emissivity
- JHK consistent with Lick Observatory; LM extrapolated from performance model

•Sensitivity limits in grism mode: ~7.5 magnitudes brighter than equivalent broad band

DŜI

3

(DŚI)

 $(\begin{tabular}{c})$

(R-1-T)

FLITECAM Commissioning status

FLITECAM observing since 2002

Commissioned at Lick Observatory

8 observing campaigns

Imaging and spectroscopy in bands available from ground

Installed on SOFIA as part of the "FLIPO" configuration

HIPO and FLITECAM co-mount

Support to SOFIA Characterization and Integration team (SCAI)

Partial FLITECAM commissioning

4 flights achieved through end of October 2011

3

Imaging and dither observing in most filters – full array and sub-array modes Spectroscopy observations in both low and hi resolution

Gyro drift observations, emissivity tests, image size as a fn of wavelength

Unable to complete critical tests to verify performance

On slit nodding difficult, full dither pattern execution unreliable (timing?) LOS Reset pointing errors during spectroscopy

(R-1-T)

FLITECAM Commissioning Continued

- Backgrounds are higher due (partly) to FLIPO warm optics
 - requires use of sub-array mode in Ice, PAH, L, M filters
- Backgrounds will be reduced in FLITECAM alone mode
- Data analysis in works can't confirm sensitivity at this time
- Additional FLIPO flights (3) are in discussion for December 2011
 - Support to SCAI team no further specific FLITECAM commissioning

DŜI

• Formal FLITECAM alone commissioning

(C)

• scheduled for October 2012

RIT

FLITECAM CfP Availability

Current status:

Imaging: stare and dither tested in *most* bands Overheads ~75% due to interface problems with telescope <u>Caveat:</u> in the thermal bands a sub array is required to prevent array saturation (but this will be better known after FCAM alone commissioning).

Spectroscopy: will be shared risk; unsolved guiding/nodding Low resolution is recommended for Cycle 1 On/Off slit nodding OK Nods along slit not available yet

Expect update after formal instrument commissioning fall 2012 FLITECAM cycle one observations available in spring 2013

DŜI

(B)

