

GREAT: <u>German RE</u>ceiver for <u>A</u>stronomy at <u>Terahertz</u> frequencies

GREAT at the pre-shipment review ("ready to go")

Collaborators /WPs: ■ MPIfR (2.7 THz channel) > R. Güsten (PI)

- > P. v.d. Wal (Structure, Cryostats)
- S. Heyminck (2.7THz LO, Certification)
- B. Klein / C. Kasemann (FFTS)
- KOSMA (1.4 & 1.9 THz channel)
 - J. Stutzki (Co-PI)
 - U. Graf et al. (1.4 &1.9THz LO, Optics)
 - K. Jacobs et al. (HEB mixers L&M bands)
 - R. Schieder et al. (Array-AOS)
- DLR-PF (4.7 THz channel)
 - H-W. Hübers et al. (IF, Cold-Load, mixer..)

MPS

P. Hartogh et al. (CO-PI; CTS)

GREAT is a

- modular heterodyne receiver system in the 1.2 5 THz frequency range
 - channel independent components
 - main structure : optics-compartments, LO-compartments, electronics rack
 - cryostats : liquid Helium/Nitrogen cooled dewar
 - calibration unit : liquid Nitrogen cooled cold-load, ambient temp. hot load
 - control-electronics : optics, mixer bias, power supply
 - IF-system

- : input 4-8 GHz, output 4 times 1.55 2.65 GHz for AOS and CTS
- back-ends (instantaneous bandwidth; resolution is given as equivalent noise bandwidth)
 - AOS-system
 - : 8 times 1.1 GHz, ~1.7 MHz resolution : 2 times 210 MHz, ≤ 60 kHz resolution
 - : 2 times 1.8 GHz, 255 kHz resolution and/or
 - : 2 times 750 MHz, 53 kHz resolution
- operating two independent receiver channels simultaneously
 - channel specific components

– CTS-system

– FFTS

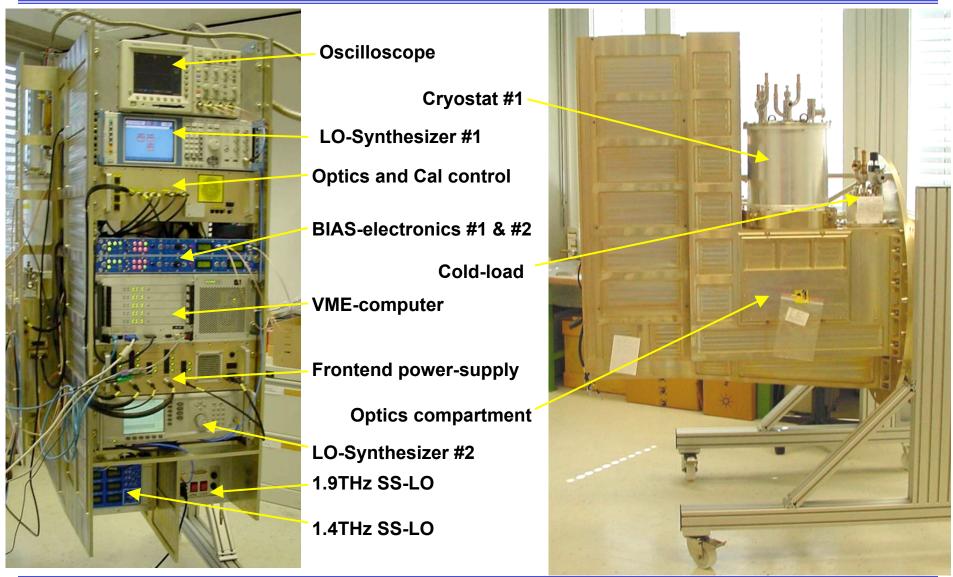
optics

: LO-coupling, matching mixer beam to the telescope focal plane

LO-system

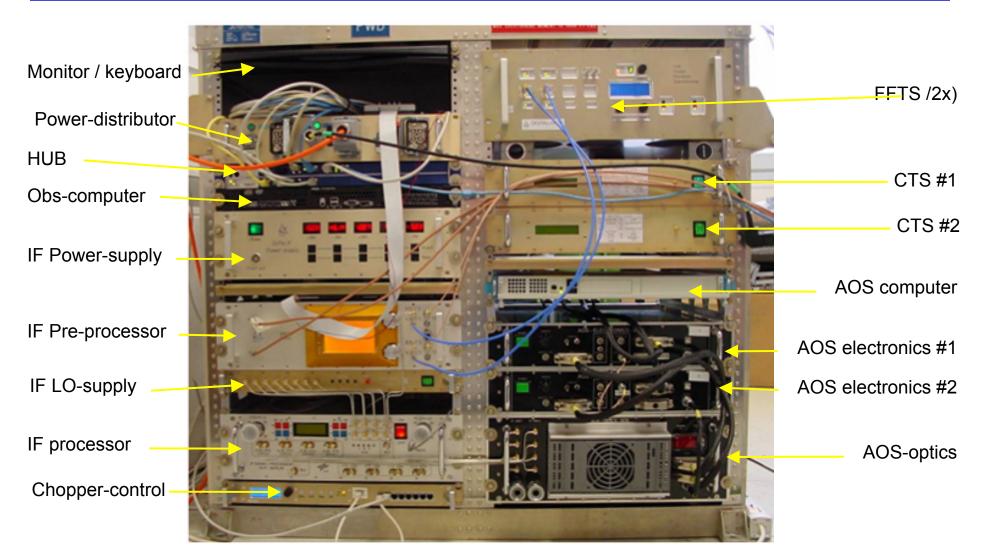
mixer device

- : solid-state, cascading multiplier chains (baseline for L#1 and L#2)
- : HEBs (for all GREAT channels)

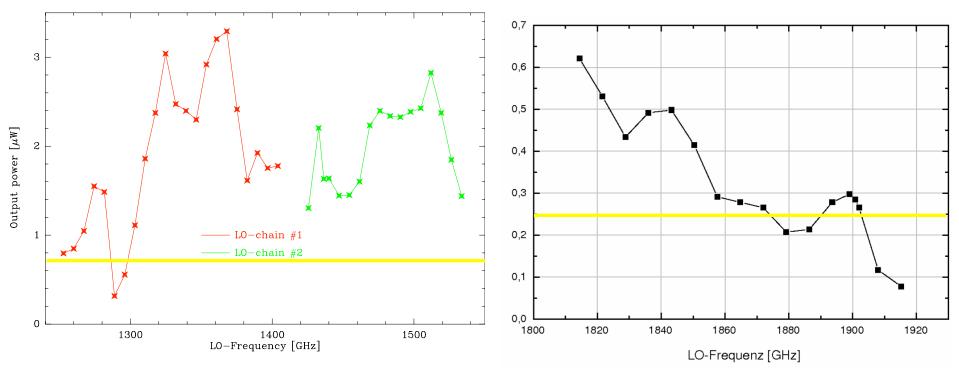

Four channels are in build-up or test-phase:

	-band (KOSMA):	1.4 THz (L#1)	and 1.9 THz (L#2)	Short Science
waveguide HEB-mixers from KOSMA				
i	solid-state local oscillators (BWO as fall-back option for the 1.9THz channel)			configuration
	/I-band (MPIfR):	2.7 THz		
HEB-mixers from KOSMA (open structure or waveguide)				
solid-state local oscillator				
H-band (DLR-Berlin) 4.7 THz				
open structure HEB-mixers from DLR-PF				
far infrared laser system (CO ₂ laser pumped)				
(quantum cascade laser is an option for the future)				
Channel	Frequencies	s [THz] Astror	nomical lines of inte	rest
low-frequency #1 1.25—1.8		1.50 [NII], C	[NII], CO(12-11), ⁽¹³⁾ CO(13-12), HCN(17-16), H ₂ D ⁺	
low-frequency	/ #2 1.82—1	1.92 [CII]. C	[CII], CO(16-15)	
		- L- J, -	0(1010)	
mid-frequenc	y 2.60—2	• •		

Short Science Configuration

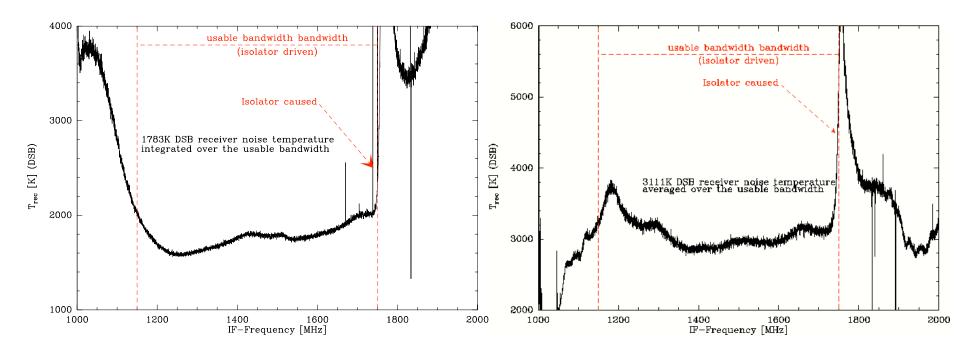

MPIfR KOSMA MPS DLR-PF

IF & Backends


MPIfR KOSMA MPS DLR-PF

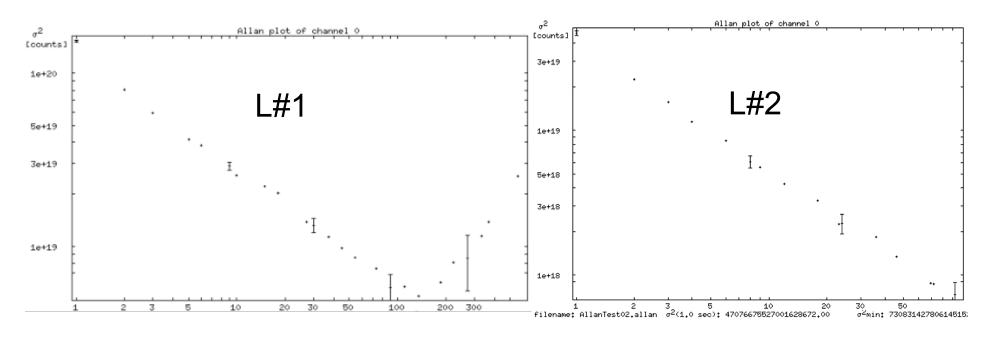
Frequency Coverage

LO-Output power vs. LO tuning frequency (yellow line indicates minimum power requirement)



L#1: 1250 GHz to 1530 GHz
two exchangeable LO-chains for wide coverage (marked red and green resp.)

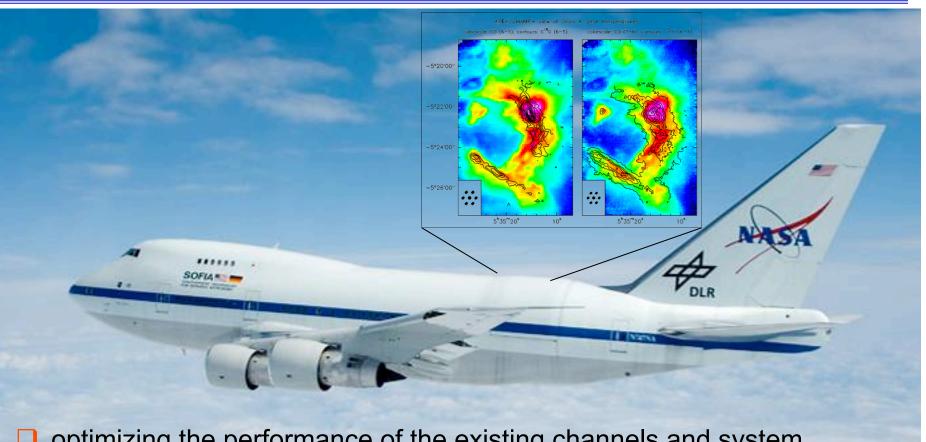
L#2: 1810 GHz to 1905 GHz almost continuous coverage, all relevant astronomical lines can be operated


Receiver Temperatures

- DSB-receiver noise temperature vs. IF-frequency
 - L#1 @ 1497GHz: 1800K averaged over the usable band
 - L#2 @ 1902GHz: 3000K averaged over the usable band
 - noise temperature includes all losses (uncorrected)
 - bandwidth is limited to 600 MHz by cryogenic isolator

Spectroscopic Stability

- □ typical Allan-plots (850 kHz resolution), measured with FFTS
 - L#1 tuned to 1497 GHz
 - L#2 tuned to 1902 GHz
 - optics compartment was closed (and evacuated for the L#2 obs)
 - the receiver beam was terminated at an ambient temperature hot load
 - spectroscopic Allan-Variance minimum time > 90s


- □ 15.02.09: shipment not later than
- □ 01.-15.03.09: re-integration, post-shipment inspection
- 01.-30.04.09: GREAT line ops #1
- □ 15.-27.07.09: re-install, line ops #2 (optional)
- □ 28.-17.08.09: short science flights with GREAT
- during Short Science, GREAT will be operated in its baseline (L#1 & L#2) configuration
- Basic Science flights may include mid frequency channel (M)
- for Basic Science flights GREAT (operated by the PI team) will be offered to interested SOFIA communities in collaboration with the PI team.

CO J=12-11 1.4969 THz (L#1)

- $> T_{rx} = 1800 \text{ K}$, transmission 0.98
- ≻ T_{sys} ~ 4000 K ∆v = 1km/s (5 MHz)
- ≻∆T ~60 mK (rms)
- □[CII] 1.902 THz ,157.74 µm (L#2)
 - $> T_{rx} = 3000 \text{ K}$, transmission 0.8
 - $> T_{sys} \sim 8300 \text{ K} \Delta v = 1 \text{km/s} (6.3 \text{ MHz})$
 - ≻∆T ~ 0.11K (rms)
 - For an unresolved star with a 5 km/s wide line, this corresponds to a one sigma limit ~ 1.7 10⁻¹⁷ W/m²

optimizing the performance of the existing channels and system
wider instant. IF-coverage, mixers, LO-system (photonics), back-ends
additional frequency channels for wider RF-coverage (M, H)
making use of both polarizations for each channel

MPIfR KOSMA

MPS DLR-PF