SOFIA/EXES Study of CH_4 and SO_2 toward Massive YSOs

Adwin Boogert SOFIA/USRA NASA Ames Moffett Field, CA, USA

Contents

- 1 Motivation
- 2 GO Programs and Team
- 3 CH₄
- $4 SO_2$
- 5 Conclusions
- 6 EXES Posters

High Resolution Mid-IR Spectroscopy

1) Absorption of molecular species against strong mid-IR continuum sources: sensitive to material close to YSO

2) Mid-IR traces species with no dipole moments.

3) High resolution spectroscopy: kinematics relates to location.

18 Oct 2016

GO Programs

- **02_0104**: 3.3 hours to observe gaseous CH₄ in two massive YSOs (both NGC 7538 IRS1 and Mon R2 IRS3 observed)
- **04_0153**: 4.0 hours to observe gaseous SO₂ in three massive YSOs (W3 IRS5 observed, GL 2136 and Mon R2 IRS3 not yet)

Different chemistries CH_4 and SO_2 offer different tracers physical conditions in massive YSOs.

Team

Matt Richter (UC Davis)

Nick Indriolo (STScI)

Curtis DeWitt (UC Davis)

David Neufeld (Johns Hopkins University)

Agata Karska (Adam Mickiewics Universit)

Ted Bergin (University of Michigan)

Rachel Smith (Appalachian State University)

Ed Montiel (UC Davis)

 CH_4

Asilomar/SOFIA: CH_4 and SO_2 Massive YSOs

CH₄ Chemistry

Low extinction ($A_v \sim 1 \text{ mag}$):

- Gas phase CH₄ formation slow due to energy barriers
- C preferably in gas phase CO

High extinction $(A_v > 2 \text{ mag})$:

- CH_4 formed on grain surfaces (C hydrogenation) as is H_2O (O hydrogenation)
- Low CH₄/H₂O ice ratio (few percent)

CH₄ Chemistry

CO destruction enhances CH₄: at high gas phase temperature or on grain surfaces.

COM (Complex Organic Molecules) formation:

● CH_4 → carbon chains, e.g., "Warm Carbon Chain Chemistry Sources" ●CO → H_2CO , CH_3OH ,

Measurements CH₄ important:

- Ice not possible with SOFIA... telluric CH₄ Q-branch, insufficient instrumentation.
- Gas phase CH₄ possible with EXES

Previous CH₄ Observation

•Ground-based telescopes at 3.32 µm (C-H stretch): large Doppler shift needed to detect gas phase CH₄:

- -82 km/s for NGC7538
 IRS9 combination of earth motion and high sourceV_{helio}
- P Cygni line profile indicates warm CH₄ in expanding shell.

Previous CH₄ Observation

CH₄ with SOFIA/EXES

11

CH₄ with SOFIA/EXES

18 Oct 2016

CH₄ with SOFIA/EXES

CH₄ with SOFIA/EXES

CH₄ with SOFIA/EXES

18 Oct 2016

SO_2

18 Oct 2016

Asilomar/SOFIA: CH_4 and SO_2 Massive YSOs

Why Study SO₂?

18 Oct 2016

Asilomar/SOFIA: CH_4 and SO_2 Massive YSOs

Why Study SO₂?

SO₂ Abundance relative to SO or H₂S is hot core age indicator.

Problem: little H₂S in ice. What is source of S?

18 Oct 2016

SO₂: Previous IR Observations

- •ISO/SWS detected warm gas phase SO₂ toward massive YSOs
- Factor ~10 more abundant than in sub-millimeter studies of pure rotational lines
- •What is location of this SO₂? Need line profile information.

Keane et al. A&A, 371, 5, 2001

18 Oct 2016

Asilomar/SOFIA: CH_4 and SO_2 Massive YSOs

SO₂: Complex IR Spectrum

18 Oct 2016

portion of the observation (includes atmosphere!)

18 Oct 2016

Asilomar/SOFIA: CH_4 and SO_2 Massive YSOs

lines must be much broader than 5 km/s!

lines must be ~30 km/s wide!

18 Oct 2016

SO₂ line detection after Doppler shift, but there are residuals!

18 Oct 2016

Not all detected lines are due to SO₂

18 Oct 2016

(Preliminary) Conclusions

- •SO₂ associated with strong shocks
- •SO₂ abundance enhanced w.r.t. large scale cloud suggests shock formation:
 - —What is source of Sulfur?
 - ●unlikely sublimated H₂S.
 - $\odot S_2$ from ice?
 - •S sputtered from refractory grains?
- •CH₄ gas **only** present in warm gas phase, but with relatively narrow lines: sublimation from icy grains in hot core.
- Further CH₄ and SO₂ observations needed in larger variety of sources.

EXES Posters

Montiel et al.: Science with EXES (including line survey of oxygen-rich hypergiant VY Canis Majoris)