SOFIA Program Status

Pamela Marcum SOFIA Project Scientist

DPS, Monday Oct 4, 2010

SOFIA Stratospheric Observatory for Infrared Astronomy

- Recent Achievements
- Near-future Milestones
- Observatory Performance
- Science Instrument Overview
- Observatory Status Summary

SOFIA

Stratospheric Observatory for Infrared Astronomy

27

Boeing 747SP

International partnership: 80% -- NASA (US) 20% -- DLR (Germany)

100% Open Door test flight

NASA

2.7-meter

December 18, 2009

Ground-based Observatories

SOFIA and Major IR Imaging/Spectroscopic Space Observatories

SOFIA and Major IR Imaging/Spectroscopic Space Observatories

... PROVIDES LONG TEMPORAL BASELINE: LONG-TERM MONITORING PROGRAMS AND FOLLOW UP FOR SHORTER-LIVED SPACE-BASED MISSIONS

- Recent Achievements
- Near-future Milestones
- Observatory Performance
- Science Instrument Overview
- Observatory Status Summary

Recent Successes!

- ✓ Functional Check Flight (FCF) on December 9, 2009
- ✓ 10% Open-Door test flight on December 14, 2009
- ✓ 100% Open-Door test flight on December 18, 2009
- ✓ "Misalignment" flight on April 30, 2010
- ✓ Open Door full envelope expansion complete!
 - ✓ 100% Door Open envelope cleared up to 45 kft
 - ✓ No cavity acoustics or aircraft issues in flight
 - ✓ 3 unplanned partial Door-Open Landings without incident
 - ✓ Planned 100% Door-Open Landing accomplished successfully
- ✓ Telescope activation; Jan 15, 2010
- ✓ Call for Basic Science; April 2010
 - ✓ Call for Proposals released on Apr 19, 2010;
 - ✓ Proposal deadline July 30, 2010
- ✓ Science Instrument workshop, Asilomar, CA; June 2010
- ✓ Telescope characterization/First light; night of May 25, 2010
- Complete Observatory Line Operations, Summer 2010
- Short Science #1 flights (FORCAST); fall 2010
- Short Science #2 flights (GREAT); early 2011
- Basic Science flights; 2011
- Proposal call for new instruments

initial series of flights to test aircraft modifications and provide flight safety assurance

SOFIA FIRST LIGHT! May 25, 2010

Visible light image

(Eric Becklin's upcoming talk will discuss these observations in detail)

SOFIA infrared image (5.4, 24, and 37 μ m)

SOFIA FIRST LIGHT!

May 25, 2010 · M82 Inset (visible light) Visible light image

SOFIA infrared image (19, 31, and 37 μ m)

- Recent Achievements
- Near-future Milestones
- Observatory Performance

SOFIA=

- Science Instrument Overview
- Observatory Status Summary

NAS

#

What's Left to Do in the Near Term...

- ✓ Functional Check Flight (FCF) on December 9, 2009
- ✓ 10% Open-Door test flight on December 14, 2009
- ✓ 100% Open-Door test flight on December 18, 2009
- ✓ "Misalignment" flight on April 30, 2010
- ✓ Open Door full envelope expansion complete!
 - ✓ 100% Door Open envelope cleared up to 45 kft
 - ✓ No cavity acoustics or aircraft issues in flight
 - ✓ 3 unplanned partial Door-Open Landings without incident
 - ✓ Planned 100% Door-Open Landing accomplished successfully
- ✓ Telescope activation; Jan 15, 2010
- ✓ Call for Basic Science; April 2010
 - ✓ Call for Proposals released on Apr 19, 2010;
 - ✓ Proposal deadline July 30, 2010
- ✓ Science Instrument workshop, Asilomar, CA; June 2010
- ✓ Telescope characterization/First light; night of May 25, 2010
- Complete Observatory Line Operations, Summer 2010
- Short Science #1 flights (FORCAST); fall 2010
- Short Science #2 flights (GREAT); early 2011
- Basic Science flights; 2011
- Proposal call for new instruments

initial series of flights to test aircraft modifications and provide flight safety assurance

"Early Science"

- Early Science flights occur before the flight envelop is fully cleared and while some onboard mission systems are still in development.
 - a shared-risk activity
 - the science community gains earlier access to SOFIA
 - early tests of astronomical observing

	EARLY SCIENCE			
	SHORT SCIENCE	BASIC SCIENCE		
FORCAST mid-IR imager (US)	3 flights GIs selected	12 flights 8	80% NASA share US Guest	
GREAT sub-mm heterodyne receiver (German)	3 flights GIs selected	3 flights 20% DLR share GREAT consortium	Investigators US, international proposals (except from German institutions) accepted	

	REQUIREMENT	STATUS
Effective aperture diameter	2.5 meters	\checkmark
Telescope elevation range	20-60 degrees	\checkmark
Image size @ 0.55µm	D(80%)=1.5 FWHM= 5.3" (1 st science flight) 1.6" (1 st science flight + 3 years)	 √(~4") [‡] future capability
Operations capability	6 hours at/above 41000 feet	\checkmark
Wavelength range	0.3-1600 microns	
Operations capability	40 PI/GI teams per year	
Operations capability	960 hr/yr nominal operations	

[‡] Improvements to reach +3 year requirement will concentrate on jitter reduction and chopper performance.

SOFIA IS READILY MEETING ITS REQUIREMENTS TO START EARLY SCIENCE!

3000 registered, averaged frames

Martin Burgdorf will have more to say about telescope performance in his presentation.

Recent Achievements
Near-future Milestones
Observatory Performance
Science Instrument Overview
Observatory Status Summary

Instrument R/ λ graph

FORCAST

Faint Object infraRed CAmera for the SOFIA Telescope

- Facility-class instrument
- Mid IR, two-channel camera for simultaneous imaging
- •Selectable ($\Delta\lambda \sim 2\mu$ m) filters in 4-8 μ m, 16-40 μ m regimes
- •0.75 arcsec/pixel
- •3.2x3.2 arcmin field-of-view

GREAT

<u>German</u> <u>REceiver for Astronomy at Terahertz frequencies</u>

- Principal Investigator instrument
- Heterodyne spectrometer
- Dual-channel, 3 frequency windows
 - 1.25-1.52Thz, 1.82-1.92 THz (158-187 microns)
 - 2.4-2.7 THz (100-125 microns)

Available to Basic Science

Bill Reach and Ted Dunham will be discussing the kinds of science investigations possible using these instruments.

First-Generation Instruments

Lab-picture of GREAT equipped with the KOSMA 1.9THz channel

The SOFIA Program has made <u>significant</u> recent progress:

- Successful First Light flight accomplished this summer.
- Envelope expansion to fly at maximum altitude completed earlier than originally planned.
- On-schedule for a 2nd generation science instrument AO next year.

 SOFIA is <u>meeting its observatory performance</u> <u>requirements</u> to start science observations next month!

BACKUP

Set Photometric Sensitivity and Angular resolution

Angular Resolution

SOFIA is as sensitive as ISO

SOFIA is diffraction limited beyond 25 μ m (θ min ~ λ /10 in arcseconds) and can produce images three times sharper than those made by Spitzer

Seatthe Advantages of SOFIA

- Above 99.8% of the water vapor
- Transmission at 14 km >80% from 1 to 800 µm; emphasis on the obscured IR regions from 30 to 300 µm
- Instrumentation: wide variety, rapidly interchangeable, state-ofthe art – SOFIA is a new observatory every few years!
- Mobility: anywhere, anytime
- Twenty year design lifetime
- A near-space observatory that comes home after every flight

Instrument	Туре	λλ (μm)	Resolution	PI	Institution
HIPO	fast imager	0.3 – 1.1	filters	E. Dunham	Lowell Obs.
FLITECAM *	imager/grism	1.0 – 5.5	filters/R~2000	I. McLean	UCLA
FORCAST *	imager/(grism?)	5.6 – 38	filters/(R~2000)	T. Herter	Cornell U.
GREAT	heterdyne receiver	62-65 111 – 125 158 – 214 200 – 240	R~10 ⁴ − 10 ⁸	R. Gusten	MPIfR
FIFI LS	imaging grating spectrograph	42 – 100 110 – 210	R~1000 – 2000	A. Krabbe	DSI
HAWC *	imager	40 - 300	filters	D.A. Harper	Yerkes Obs
EXES	imaging echelle spectrograph	5 – 28.5	R~3000 – 10⁵	M. Richter	ARC/UC-Davis

* Facility-class instrument