Probing the Hot, Dense Gas near Massive Protostars via Water Absorption

Nick Indriolo¹, A. C. A. Boogert², C. N. DeWitt³, A. Karska⁴, E. J. Montiel⁵, D. A. Neufeld⁶, & M. J. Richter⁵

¹Space Telescope Science Institute, Baltimore, MD, USA ²Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI, USA

³USRA, SOFIA, NASA Ames Research Center, Moffett Field, CA, USA ⁴Nicolaus Copernicus University, Torun, Poland

⁵University of California, Davis, CA, USA ⁶Johns Hopkins University, Baltimore, MD, USA

Background

- Warm conditions near massive protostars drive a significant fraction of oxygen into water vapor
- Ro-vibrational bands of H₂O are centered at about 3 μ m and 6 μ m, and cause the Earth's atmosphere to be mostly opaque at these wavelengths
- SOFIA (Stratospheric Observatory for Infrared Astronomy [7]) provides an observing platform above 99% of the water vapor in Earth's atmosphere
- EXES (Echelon-Cross-Echelle Spectrograph [6]) offers \sim 4 km/s spectral resolution in the mid-IR
- Previous observations of massive protostars in the mid-IR with ISO-SWS covered the full extent of the ν_2 vibrational band of H₂O, but at low spectral resolution (~200 km/s), such that absorption from several transitions is blended together (see spectrum below)
- High spectral resolution observations of H₂O can resolve individual absorption lines, which provides information about specific transitions and the rotational states they connect
- This enables the study of conditions (e.g., density, temperature, radiation field) surrounding massive protostars, as well as the kinematics of the absorbing gas (via line profiles)

Left: ISO-SWS spectrum of the massive protostar AFGL 2136 covering the ν_2 vibrational band of H₂O [1]. The ~200 km/s spectral resolution results in blending of the absorption from different transitions. Shaded regions mark the wavelength ranges targeted by our SOFIA/EXES observations.

Right: SOFIA/EXES spectra of AFGL 2136, color-coded to match the corresponding shaded regions shown in the ISO-SWS spectrum. Absorption due to more than 50 different ro-vibrational transitions of H₂O is detected. Select transitions are marked and identified (see table below at right) to demonstrate the utility of high spectral resolution observations in probing rotational levels of H₂O over a wide range of energies and out of multiple vibrational states, and in revealing absorption from the $H_2^{18}O$ isotopologue.

H₂O Rotation Diagrams for Protostars Observed with SOFIA/EXES

Mon R2 IRS3

1000 1500 2000 2500 3000 3500

Lower State Energy (K)

 28 T = 475.4 ± 45.9 K

Red lines are linear fits to the data, and the temperatures and total H₂O column densities derived from these fits assuming LTE are given in the table below. Error bars show $1\,\sigma$ uncertainties in ln(N/g), and the wide spread in In(N/g) cannot be accounted for under the assumptions of LTE and optically thin absorption by a uniform slab. States with column densities below predicted values (due to weaker absorption than expected) skew the inferred temperatures upward.

Select transitions observed toward AFGL 2136

Marker	Molecule $v_2' - v_2''$		$J(K_a, K_c)' - J(K_a, K_c)''$	Lower State Energy (K)		
	H ₂ O	1 - 0	1(1,1) - 0(0,0)	0		
	H ₂ O	1 - 0	4(0,4) - 5(1,5)	470		
	H ₂ O	1 - 0	8(3,6) - 8(2,7)	1274		
*	H ₂ O	2 - 1	10(1,10) - 9(0,9)	3615		
	H ₂ O	1 - 0	13(4,10) - 13(5,9)	3701		
	H ₂ ¹⁸ O	1 - 0	3(2,1) - 3(1,2)	249		

Summary

- SOFIA/EXES observations of massive protostars near 6 μ m reveal a wealth of resolved H₂O absorption lines, including some from the H₂¹⁸O isotopologue
- Observations of H₂O in the mid-IR probe a different region around massive protostars than in the far-IR and THz regimes, as evidenced by the disparity in temperature and column density estimates
- Investigation into what causes several transitions to have weaker absorption than expected is ongoing.

Comparison of Inferred Properties to Previous Studies

Target	N(H ₂ O)	Temperature	Instrument &	N(H ₂ O)	Temperature	Instrument &	N(H ₂ O)	Temperature	Instrument &
	(10 ¹⁸ cm ⁻²)	(K)	Reference	(10 ¹⁸ cm ⁻²)	(K)	Reference	(10 ¹⁸ cm ⁻²)	(K)	Reference
AFGL 2136	2.5 <u>+</u> 0.6	628 <u>+</u> 44	EXES [4]	1.5 <u>±</u> 0.6	500 <u>±</u> 200	ISO/SWS [1]	10.2±0.2	506 <u>±</u> 25	VLT/CRIRES [3]
AFGL 2591	2.4 <u>±</u> 0.6	704 <u>±</u> 58	EXES [4]	3.5±1.5	450±200	ISO/SWS [1]	4×10 ⁻⁵	80 <u>±</u> 10	Herschel/HIFI [2]
Mon R2 IRS3	0.6±0.2	475 <u>±</u> 46	EXES [4]	0.5±0.2	250±150	ISO/SWS [1]	•••	•••	•••
NGC 7538 IRS1	0.3 ± 0.1	421 <u>±</u> 68	EXES [4]	<0.5	•••	ISO/SWS [1]	$(2\pm1)\times10^{-4}$	170±70	Herschel/PACS [5]
W3 IRS5	1.1±0.4	624±60	EXES [4]	0.3 ± 0.1	400±200	ISO/SWS [1]	(6±4)×10 ⁻⁴	220 <u>±</u> 160	Herschel/PACS [5]

References

- 1 Boonman & van Dishoeck 2003, A&A, 403, 1003
- 2 Choi et al. 2015, A&A, 576, A85
- 3 Indriolo et al. 2013, ApJ, 776, 8
- 4 Indriolo et al. 2019 (in preparation)
- 5 Karska et al. 2014, A&A, 562, A45 6 – Richter et al. 2010, Proc. SPIE 7735
- 7 Temi et al. 2014, ApJS, 212, 24