Mid-IR imaging and spectroscopy with FORCAST

The galactic center with FORCAST (NASA/DLR/USRA/DSI/FORCAST Team/Lau et al. 2013)

Faint Object infraRed CAmera for the SOFIA Telescope

- 2-channel mid-IR camera and grism spectrometer
- 1st Gen Instrument
- PI T. Herter (Cornell)
- Wide field (3.4' x 3.2' FOV) dual channel 5-40 μ m camera and spectrograph
- SWC Si:As BIB 256x256 array for 5-25 μ m, 0.79"x0.75"pix, re-binned to 0.768" square
- LWC Si:Sb BIB 256x256 array for 25-40 μm, 0.79"x0.75"pix, re-binned to 0.768" square
- 2 Grisms + 2 long slits provide low resolution (R^70-300) spectroscopy over 5-40 μm

Schematics

2018 Community Days Workshops

Filters and grisms

Filter Parameters					
SWC	Filters	LWC Filters			
λ _{eff} (μm)	Δλ (μm)	λ _{eff} (μm)	Δλ (μm)		
5.4	0.16	24.2	2.9		
5.6	0.08	31.5	5.7		
6.4	0.14	33.6	1.9		
6.6	0.24	34.8	3.8		
7.7	0.47	37.1	3.3		
8.8	0.41	A subset of these will be chosen each cycle as the nominal set.			
11.1	0.95				
11.2	2.7				
11.3	0.24				
11.8	0.74				
19.7	5.5				
	7. 5.77				

		Grism	Detai	ļ
144 F.Co.	To China		196	

1.86

25.4

Grism	Coverage (µm)	$R (\lambda/\Delta\lambda)^a$
G063	4.9-8.0	120°/180
G111	8.4–13.7	130°/260
G227	17.6–27.7	110/120
G329	28.7–37.1	160/170 ^b

Filter, Grism, & Slit defined in header with keywords: **SPECTEL1**, **SPECTEL2**, & **SLIT**

Spectral features of interest

FORCAST Imaging Resolution

FORCAST grism design overview: layout

Grism spectral formats

interference fringes

Long slit modes

Short slit (XD) modes

Spectroscopic Sensitivity

- S/N=4 in 900s, 41000 feet, single channel mode only
- Altitude/water vapor affect sensitivity more in the LWC

Chop/Nod Technique

- MIR observations are completely background (sky+telescope+instrument) limited
 - o Background can be >106 times brighter than most sources
 - o Detector wells can fill in 1-100 msec
- MIR background varies rapidly (order of less than a few sec)
- To subtract majority of the background the secondary is tilted between on-source and off-source positions (chopping) at a rapid rate (~few Hz)
- However, chopping introduces small additional offsets due to the different optical paths for the beams in the two chop positions
- To remove background offset, telescope is moved to another position (nodding) and the chop is repeated
 - o Nods on a timescale of ~30 sec,
- The two images from the chop positions are subtracted, and the two resulting chop-subtracted images from the two nod positions are subtracted
 - o This double-differencing removes all background contributions
- One must ALWAYS chop and nod for FORCAST observations

Chopping & Nodding

Chop Nod Animation

Nod Position A

Plus Beam

Source+Sky+Tel₊
Sky+Tel₋)

Nod_Match_Chop (Symmetric Chop) Mode:

Grism Observing Modes: NMC

Perpendicular Nod Nod Throw Boresight Nod B θ_{chop} Chop **Throw**

Parallel

Nod Throw Nod B

Nod

Chop Throw

Default is a chop angle of 30° and a nod angle of 210°, but the angles can be chosen by the user. Indicated by header keywords:

Chop Parameters: CHOPSYM, CHPCRSYS, CHPAMP1, CHPAMP2, & CHPANGLE

Nod Parameters: NODSTYLE, NODCRSYS, NODAMP, & NODANGLE

2018 Community Days Workshops

Grism Observing Modes: NXCAC (similar to C2NC2 for imaging)

Pointed observations & mapping in extended sources

Large HII region example NXCAC mode

FORCAST Data Products

- Once flight series is complete, data are pipelined, flux calibrated, and archived in the SOFIA Data Cycle System (https://dcs.sofia.usra.edu), usually within a month.
- GOs are then notified via email and provided links for data retrieval.
- Proprietary period is typically 1 year from completion of pipeline processing and calibration.
- Pipeline processing removes instrumental artifacts and sky/telescope background.
- Telluric correction is applied using a grid of ATRAN models.
- Flux calibration is applied using response tables/curves derived from observations of standard sources (stars/asteroids).
 - Flux calibration uncertainty: 5 10%
- See FORCAST Data Handbook and Cookbook Recipes for more information:
 - https://sofia.usra.edu/science/proposing-and-observing/data-products

Bonus Slides:

The galactic center with FORCAST (NASA/DLR/USRA/DSI/FORCAST Team/Lau et al. 2013)

FORCAST Filter Profiles

SOFIA : 41000 ft, $7.3 \mu \text{m}$ PWV, 45° ZA

Mauna Kea: 13800 ft, 3.4 mm PWV, 45° ZA

Imaging Sensitivity

- S/N=4 in 900s, 41000 feet, single channel mode; larger limiting fluxes with dichroic
- Altitude/water vapor affect sensitivity more in the LWC
- In preparing your FORCAST observations, you can use SITE, the online integration time estimator

Nod B

-

=

Nod A (chop 1 - chop 2) – Nod B (chop 1 - chop 2) =

Grism Observing Modes: CAS, NAS

Chop_Along_Slit

Nod_Along_Slit

FOCAST Grism Data: Pipeline and Products

AAS SOFIA Data Workshop

R. Y. Shuping
Observatory Scientist
USRA-SOFIA/SSI

FORCAST Data Reduction Pipeline

FORCAST Grism Data Products

STEP	Description	LEVEL	DCS PRODTYPE	Product ID	Size
Stack Chop/Nods	Chop/nod correction	2	stacked	STK	256x256x2
Extract Spectra	Rectified image produced during extraction.	2	rectified	RIM	X x Y x 4
Extract Spectra	Raw extracted spectra	2	spec	SPC	X x 4
Flux Calibrate	Flux calibrated spectra	3	calspec	CAL	<i>X</i> x 5
Combine Spectra	Combined spectra	3	combspec	СМВ	<i>X</i> x 5

These are generally the products of interest for most GOs and archive users.

FORCAST Grism Flux Calibration

- Extracted spectra are corrected for instrumental response...
 - Determined empirically from observations of calibrators (standard stars and asteroids).
- ...then corrected for telluric absorption using standard model atmosphere.
 - Best fit determined from grid of ATRAN models.
- Adopted telluric model and instrumental response are included with the final spectrum.
- Overall absolute calibration accuracy is 5 10%, but...
- Data can be affected by systematic uncertainties, e.g. variable slit losses.
 - If you need absolute spectrophotometry, consider additional imaging observations for final calibration.

File Naming Conventions

F0428_FO_GRI_0500637_FORG111_CAL_0177.fits

F0434_F0_GRI_0501381_FORG063_CMB_0228-0229.fits

Data Format: Flux Calibrated Products (L3)

Flux Calibrated products delivered as N x 5 array, one per FITS file.

FOCAST Grism Data: Pipeline and Products

AAS SOFIA Data Workshop

R. Y. Shuping
Observatory Scientist
USRA-SOFIA/SSI

FORCAST Data Reduction Pipeline

FORCAST Grism Data Products

STEP	Description	LEVEL	DCS PRODTYPE	Product ID	Size
Stack Chop/Nods	Chop/nod correction	2	stacked	STK	256x256x2
Extract Spectra	Rectified image produced during extraction.	2	rectified	RIM	X x Y x 4
Extract Spectra	Raw extracted spectra	2	spec	SPC	X x 4
Flux Calibrate	Flux calibrated spectra	3	calspec	CAL	<i>X</i> x 5
Combine Spectra	Combined spectra	3	combspec	СМВ	<i>X</i> x 5

These are generally the products of interest for most GOs and archive users.

FORCAST Grism Flux Calibration

- Extracted spectra are corrected for instrumental response...
 - Determined empirically from observations of calibrators (standard stars and asteroids).
- ...then corrected for telluric absorption using standard model atmosphere.
 - Best fit determined from grid of ATRAN models.
- Adopted telluric model and instrumental response are included with the final spectrum.
- Overall absolute calibration accuracy is 5 10%, but...
- Data can be affected by systematic uncertainties, e.g. variable slit losses.
 - If you need absolute spectrophotometry, consider additional imaging observations for final calibration.

File Naming Conventions

F0428_FO_GRI_0500637_FORG111_CAL_0177.fits

F0434_F0_GRI_0501381_FORG063_CMB_0228-0229.fits

Data Format: Flux Calibrated Products (L3)

Flux Calibrated products delivered as N x 5 array, one per FITS file.

