
HAWC+ GO Data Handbook
Rev. B

Guest Observer Handbook for HAWC+ Data Products

May 17, 2018

Contents

1 Introduction 3

2 SI Observing Modes Supported 3
2.1 HAWC+ Instrument Information . 3
2.2 HAWC+ Observing Modes . 3

3 Algorithm Description 4
3.1 Chop-Nod and Nod-Pol Reduction Algorithms 4

3.1.1 Prepare . 4
3.1.2 Demodulate . 9
3.1.3 Flat Correct . 10
3.1.4 Align Arrays . 11
3.1.5 Split Images . 11
3.1.6 Combine Images . 12
3.1.7 Subtract Beams . 12
3.1.8 Compute Stokes . 12
3.1.9 Update WCS . 14
3.1.10 Correct for Atmospheric Opacity . 14
3.1.11 Subtract Instrumental Polarization 14
3.1.12 Rotate Polarization Coordinates . 15
3.1.13 Calibrate Flux . 16
3.1.14 Subtract Background . 16
3.1.15 Merge Images . 17
3.1.16 Compute Vectors . 18

3.2 Scan Reduction Algorithms . 20
3.2.1 Signal Structure . 20
3.2.2 Sequential Incremental Modeling and Iterations 22
3.2.3 DC Offset and 1/f Drift Removal . 22

HAWC+ GO Data Handbook
Rev. B

3.2.4 Correlated Noise Removal and Gain Estimation 24
3.2.5 Noise Weighting . 25
3.2.6 Despiking . 26
3.2.7 Spectral Conditioning . 26
3.2.8 Map Making . 27
3.2.9 Point-Source Flux Corrections . 29
3.2.10 CRUSH output . 30

3.3 Other Resources . 30

4 Data Products 31
4.1 File names . 31
4.2 Data format . 31
4.3 Pipeline products . 32

HAWC+ GO Data Handbook
Rev. B

1 Introduction

This guide describes the reduction algorithms used by and the data produced by the SOFI-
A/HAWC+ data reduction pipeline (DRP) for guest investigators. The HAWC+ observing
modes, for both total intensity and polarimetric observations, are described in the SOFIA
Observers Handbook, available from the Proposing and Observing page on the SOFIA Web
site.

This guide applies to HAWC+ DRP version 1.3.0.

2 SI Observing Modes Supported

2.1 HAWC+ Instrument Information

HAWC+ is the upgraded and redesigned incarnation of the High-Resolution Airborne
Wide-band Camera instrument (HAWC), built for SOFIA. Since the original design never
collected data for SOFIA, the instrument may be alternately referred to as HAWC or
HAWC+. HAWC+ is designed for far-infrared imaging observations in either total intensity
(imaging) or polarimetry mode.

HAWC currently consists of dual TES BUG Detector arrays in a 64x40 rectangular format.
A six-position filter wheel is populated with five broadband filters ranging from 40 to 250
µm and a dedicated position for diagnostics. Another wheel holds pupil masks and rotating
half-wave plates (HWPs) for polarization observations. A polarizing beam splitter directs
the two orthogonal linear polarizations to the two detectors (the reflected (R) array and
the transmitted (T) array). Each array was designed to have two 32x40 subarrays, for four
total detectors (R0, R1, T0, and T1), but T1 is not currently available for HAWC. Since
polarimetry requires paired R and T pixels, it is currently only available for the R0 and
T0 arrays. Total intensity observations may use the full set of 3 subarrays.

2.2 HAWC+ Observing Modes

The HAWC instrument has two instrument configurations, for imaging and polarization
observations. In both types of observations, removing background flux due to the telescope
and sky is a challenge that requires one of several observational strategies. The HAWC
instrument may use the secondary mirror to chop rapidly between two positions (source
and sky), may use discrete telescope motions to nod between different sky positions, or may
use slow continuous scans of the telescope across the desired field. In chopping and nodding
strategies, sky positions are subtracted from source positions to remove background levels.

https://www.sofia.usra.edu/researchers/proposing-and-observing
https://www.sofia.usra.edu/researchers/proposing-and-observing

HAWC+ GO Data Handbook
Rev. B

In scanning strategies, the continuous stream of data is used to solve for the underlying
source and background structure.

The instrument has two standard observing modes for imaging: the Chop-Nod instrument
mode combines traditional chopping with nodding; the Scan mode uses slow telescope
scans without chopping. The Scan mode is the most commonly used for total intensity
observations. The Nod-Pol observing mode is used for all polarization observations. This
mode includes chopping and nodding cycles in multiple HWP positions.

All modes that include chopping or nodding may be chopped and nodded on-chip or off-
chip. Currently, only two-point chop patterns with matching nod amplitudes (nod-match-
chop) are used in either Chop-Nod or Nod-Pol observations, and nodding is performed in
an A-B-B-A pattern only. All HAWC modes can optionally have a small dither pattern or
a larger mapping pattern, to cover regions of the sky larger than HAWC’s fields of view.
Scanning patterns may be either box rasters or Lissajous patterns.

3 Algorithm Description

The data reduction pipeline for HAWC has two main branches of development: the HAWC
DRP provides the Chop-Nod and Nod-Pol reduction algorithms, as well as the calling
structure for all steps. Scan mode reduction algorithms are provided by a standalone
package called CRUSH that may be called from the DRP.

3.1 Chop-Nod and Nod-Pol Reduction Algorithms

The following sections describe the major algorithms used to reduce Chop-Nod and Nod-
Pol observations. In nearly every case, Chop-Nod (total intensity) reductions use the same
methods as Nod-Pol observations, but either apply the algorithm to the data for the single
HWP angle available, or else, if the step is specifically for polarimetry, have no effect when
called on total intensity data. Since nearly all total intensity HAWC observations are taken
with scanning mode, the following sections will focus primarily on Nod-Pol data.

See the figures below for flow charts that illustrate the data reduction process for Nod-Pol
data (Figures 1 and 2) and Chop-Nod data (Figures 3 and 4).

3.1.1 Prepare

The first step in the pipeline is to prepare the raw data for processing, by rearranging and
regularizing the raw input data tables, and performing some initial calculations required
by subsequent steps.

HAWC+ GO Data Handbook
Rev. B

Figure 1: Nod-Pol data reduction flowchart, up through Stokes parameter calculation for
a single input file.

HAWC+ GO Data Handbook
Rev. B

Figure 2: Nod-Pol data reduction flowchart, picking up from Stokes parameter calculation,
through combining multiple input files and calculating polarization vectors.

HAWC+ GO Data Handbook
Rev. B

Figure 3: Chop-Nod data reduction flowchart, up through Stokes parameter calculation
for a single input file.

HAWC+ GO Data Handbook
Rev. B

Figure 4: Chop-Nod data reduction flowchart, picking up from Stokes parameter calcula-
tion, through combining multiple input files.

HAWC+ GO Data Handbook
Rev. B

The raw (Level 0) HAWC files contain all information in FITS binary table extensions
located in two Header Data Unit (HDU) extensions. The raw file includes the following
HDUs:

• Primary HDU: Contains the necessary FITS keywords in the header but no data. It
contains all required keywords for SOFIA data files, plus all keywords required to
reduce or characterize the various observing modes. Extra keywords (either from the
SOFIA keyword dictionary or otherwise) have been added for human parsing.

• CONFIGURATION HDU (EXTNAME = CONFIGURATION): Contains MCE (de-
tector electronics) configuration data. This HDU is stored only in the raw and de-
modulated files; it is not stored in Level 2 or higher data products. Nominally, it is
the first HDU but users should use EXTNAME to identify the correct HDUs. Note,
the “HIERARCH” keyword option and long strings are used in this HDU. All key-
word names are prefaced with “MCEn” where n=0,1,2,3. Only the header is used
from this HDU.

• TIMESTREAM Data HDU (EXTNAME = TIMESTREAM): Contains a binary ta-
ble with data from all detectors, with one row for each time sample. The raw detector
data is stored in the column “SQ1Feedback”, in FITS (data-store) indices, i.e. 41
rows and 128 columns. Columns 0-31 are for subarray R0, 32-63 for R1, 64-95 for T0
and 96-127 for T1). Additional columns contain other important data and metadata,
including time stamps, instrument encoder readings, chopper signals, and astrometry
data.

In order to begin processing the data, the pipeline first splits these input TIMESTREAM
data arrays into separate R and T tables. It will also compute nod and chop offset values
from telescope data, and may also delete, rename, or replace some input columns in order
to format them as expected by later algorithms. The output data from this step has the
same HDU structure as the input data, but the detector data is now stored in the “R
Array” and “T Array” fields, which have 41 rows and 64 columns each.

3.1.2 Demodulate

For both Chop-Nod and Nod-Pol instrument modes, data is taken in a two-point chop
cycle. In order to combine the data from the high and low chop positions, the pipeline
demodulates the raw time stream with either a square or sine wave-form. Throughout this
step, data for each of the R and T arrays are handled separately. The process is equivalent
to identifying matched sets of chopped images and subtracting them.

During demodulation, a number of filtering steps are performed to identify good data.
By default, the raw data is first filtered with a box high-pass filter with a time constant

HAWC+ GO Data Handbook
Rev. B

of one over the chop frequency. Then, any data taken during telescope movement (line-
of-sight rewinds, for example, or tracking errors) is flagged for removal. In square wave
demodulation, samples are then tagged as being in the high-chop state, low-chop state, or
in between (not used). For each complete chop cycle within a single nod position at a single
HWP angle, the pipeline computes the average of the signal in the high-chop state and
subtracts it from the average of the signal in the low-chop state. Incomplete chop cycles
at the end of a nod or HWP position are discarded. The sine-wave demodulation proceeds
similarly, except that the data are weighted by a sine wave instead of being considered
either purely high or purely low state.

During demodulation, the data is also corrected for the phase delay in the readout of
each pixel, relative to the chopper signal. For square wave demodulation, the phase delay
time is multiplied by the sample frequency to calculate the delay in data samples for each
individual pixel. The data is then shifted by that many samples before demodulating.
For sine wave demodulation, the phase delay time is multiplied with 2π times the chop
frequency to get the phase shift of the demodulating wave-form in radians.

Alongside the chop-subtracted flux, the pipeline calculates the error on the raw data during
demodulation. It does so by taking the mean of all data samples at the same chop phase,
nod position, HWP angle, and detector pixel, then calculates the variance of each raw
data point with respect to the appropriate mean. The square root of this value gives the
standard deviation of the raw flux. The pipeline will propagate these calculated error
estimates throughout the rest of the data reduction steps.

The result of the demodulation process is a chop-subtracted, time-averaged flux value and
associated variance for each nod position, HWP angle, and detector pixel. The output
is stored in a new FITS table, in the extension called DEMODULATED DATA, which
replaces the TIMESTREAM data extension. The CONFIGURATION extension is left
unmodified.

3.1.3 Flat Correct

After demodulation, the pipeline corrects the data for pixel-to-pixel gain variations by
applying a flat field correction. Flat files are generated on the fly from internal calibrator
files (CALMODE=INT CAL), taken before and after each set of science data. Flat files
contain normalized gains for the R and T array, so that they are corrected to the same
level. Flat files also contain associated variances and a bad pixel mask, with zero values
indicating good pixels and any other value indicating a bad pixel. Pixels marked as bad
are set to NaN in the gain data. To apply the gain correction and mark bad pixels, the
pipeline multiplies the R and T array data by the appropriate flat data. Since the T1
subarray is not available, all pixels in the right half of the T array are marked bad at this
stage. The flat variance values are also propagated into the data variance planes.

HAWC+ GO Data Handbook
Rev. B

The output from this step contains FITS images in addition to the data tables. The R
array data is stored as an image in the primary HDU; the R array variance, T array data, T
array variance, R bad pixel mask, and T bad pixel mask are stored as images in extensions
1 (EXTNAME=“R ARRAY VAR”), 2 (EXTNAME=“T ARRAY”), 3 (EXTNAME=“T
ARRAY VAR”), 4 (EXTNAME=“R BAD PIXEL MASK”), and 5 (EXTNAME=“T BAD
PIXEL MASK”), respectively. The DEMODULATED DATA table is attached unmodified
as extension 6. The R and T data and variance images are 3D cubes, with dimension
64x41xNframe, where Nframe is the number of nod positions in the observation, times the
number of HWP positions.

3.1.4 Align Arrays

In order to correctly pair R and T pixels for calculating polarization, and to spatially align
all subarrays, the pipeline must reorder the pixels in the raw images. The last row is
removed, R1 and T1 subarray images (columns 32-64) are rotated 180 degrees, and then
all images are inverted along the y-axis. Small shifts between the R0 and T0 and R1 and
T1 subarrays may also be corrected for at this stage. The spatial gap between the 0 and 1
subarrays is also recorded in the ALNGAPX and ALNGAPY FITS header keywords, but
is not added to the image; it is accounted for in a later resampling of the image. Note that
all corrections applied in this step are integer shifts only; no interpolation is performed.
The output images are 64x40xNframe.

3.1.5 Split Images

To prepare for combining nod positions and calculating Stokes parameters, the pipeline next
splits the data into separate images for each nod position at each HWP angle, calculates
the sum and difference of the R and T arrays, and merges the R and T array bad pixel
masks. The algorithm uses data from the DEMODULATED DATA table to distinguish
the high and low nod positions and the HWP angle. At this stage, any pixel for which
there is a good pixel in R but not in T, or vice versa, is noted as a “widow pixel.” In
the sum image (R+T), each widow pixel’s flux is multiplied by 2 to scale it to the correct
total intensity. In the merged bad pixel mask, widow pixels are marked with the value 1
(R only) or 2 (T only), so that later steps may handle them appropriately.

The output from this step contains a large number of FITS extensions: DATA and VAR
image extensions for each of R+T and R-T for each HWP angle and nod position, a VAR
extension for uncombined R and T arrays at each HWP angle and nod position, as well as a
TABLE extension containing the demodulated data for each HWP angle and nod position,
and a single merged BAD PIXEL MASK image. For a typical Nod-Pol observation with
two nod positions and four HWP angles, there are 8 R+T images, 8 R-T images, 32

HAWC+ GO Data Handbook
Rev. B

variance images, 8 binary tables, and 1 bad pixel mask image, for 57 extensions total,
including the primary HDU. The output images, other than the bad pixel mask, are 3D
cubes with dimension 64x40xNchop, where Nchop is the number of chop cycles at the given
HWP angle.

3.1.6 Combine Images

The pipeline combines all chop cycles at a given nod position and HWP angle by computing
a robust mean of all the frames in the R+T and R-T images. The robust mean is computed
at each pixel using Chauvenet’s criterion, iteratively rejecting pixels more than 3σ from the
mean value, by default. The associated variance values are propagated through the mean,
and the square root of the resulting value is stored as an error image in the output.

The output from this step contains the same FITS extensions as in the previous step, with
all images now reduced to 2D images with dimensions 64x40, and the variance images
for R+T and R-T replaced with ERROR images. For the example above, with two nod
positions and four HWP angles, there are still 57 total extensions, including the primary
HDU.

3.1.7 Subtract Beams

In this pipeline step, the sky nod positions (B beams) are subtracted from the source nod
positions (A beams) at each HWP angle and for each set of R+T and R-T, and the resulting
flux is divided by two for normalization. The errors previously calculated in the combine
step are propagated accordingly. The output contains extensions for DATA and ERROR
images for each set, as well as variance images for R and T arrays, a table of demodulated
data for each HWP angle, and the bad pixel mask.

3.1.8 Compute Stokes

From the R+T and R-T data for each HWP angle, the pipeline now computes images
corresponding to the Stokes I, Q, and U parameters for each pixel.

Stokes I is computed by averaging the R+T signal over all HWP angles:

I =
1

N

N∑
φ=1

(R+ T)φ,

where N is the number of HWP angles and (R+T)φ is the summed R+T flux at the HWP
angle φ. The associated uncertainty in I is propagated from the previously calculated errors

HAWC+ GO Data Handbook
Rev. B

for R+T:

σI =
1

N

√√√√ N∑
φ=1

σ2R+T,φ.

In the most common case of four HWP angles at 0, 45, 22.5, and 67.5 degrees, Stokes Q
and U are computed as:

Q =
1

2
[(R− T)0 − (R− T)45]

U =
1

2
[(R− T)22.5 − (R− T)67.5]

where (R − T)φ is the differential R-T flux at the HWP angle φ. Uncertainties in Q and
U are propagated from the input error values on R-T:

σQ =
1

2

√
σ2R−T,0 + σ2R−T,45

σU =
1

2

√
σ2R−T,22.5 + σ2R−T,67.5.

Since Stokes I, Q, and U are derived from the same data samples, they will have non-zero
covariance. For later use in error propagation, the pipeline now calculates the covariance
between Q and I (σQI) and U and I (σUI) from the variance in R and T as follows:

σQI =
1

8
[σ2R,0 − σ2R,45 − σ2T,0 + σ2T,45]

σUI =
1

8
[σ2R,22.5 − σ2R,67.5 − σ2T,22.5 + σ2T,67.5]

The covariance between Q and U (σQU) is zero at this stage, since they are derived from
data for different HWP angles.

The output from this step contains an extension for the flux and error of each Stokes pa-
rameter, as well as the covariance images, bad pixel mask, and a table of the demodulated
data, with columns from each of the HWP angles merged. The STOKES I flux image is
in the primary HDU. For Nod-Pol data, there will be 10 additional extensions (ERROR I,
STOKES Q, ERROR Q, STOKES U, ERROR U, COVAR Q I, COVAR U I, COVAR Q
U, BAD PIXEL MASK, TABLE DATA). For Chop-Nod imaging, only Stokes I is calcu-
lated, so there are only 3 additional extensions (ERROR I, BAD PIXEL MASK, TABLE
DATA).

HAWC+ GO Data Handbook
Rev. B

3.1.9 Update WCS

To associate the pixels in the Stokes parameter image with sky coordinates, the pipeline
uses FITS header keywords describing the telescope position to calculate the reference right
ascension and declination (CRVAL1/2), the pixel scale (CDELT1/2), and the rotation angle
(CROTA2). It may also correct for small shifts in the pixel corresponding to the instrument
boresight, depending on the filter used, by modifying the reference pixel (CRPIX1/2).
These standard FITS world coordinate system (WCS) keywords are written to the header
of the primary HDU.

3.1.10 Correct for Atmospheric Opacity

In order to combine images taken under differing atmospheric conditions, the pipeline
corrects the flux in each individual file for the estimated atmospheric transmission during
the observation, based on the altitude and zenith angle at the time when the observation
was obtained.

Atmospheric transmission values in each HAWC+ filter have been computed for a range
of telescope elevations and observatory altitudes (corresponding to a range of overhead
precipitable water vapor values) using the ATRAN atmospheric modeling code, provided
to the SOFIA program by Steve Lord. The ratio of the transmission at each altitude and
zenith angle, relative to that at the reference altitude (41,000 feet) and reference zenith
angle (45 degrees), has been calculated for each filter and fit with a low-order polynomial.
The ratio appropriate for the altitude and zenith angle of each observation is calculated
from the fit coefficients. The pipeline applies this relative opacity correction factor directly
to the flux in the Stokes I, Q, and U images, and propagates it into the corresponding error
and covariance images.

3.1.11 Subtract Instrumental Polarization

The instrument and the telescope itself may introduce some foreground polarization to
the data which must be removed to determine the polarization from the astronomical
source. The instrument team uses measurements of the sky to characterize the introduced
polarization in reduced Stokes parameters (q = Q/I and u = U/I) for each filter band at
each pixel. The correction is then applied as

Q′ = Q− q′I

U ′ = U − u′I

HAWC+ GO Data Handbook
Rev. B

and propagated to the associated error and covariance images as

σ′Q =
√
σ2Q + (q′σI)2 + 2q′σQI

σ′U =
√
σ2U + (u′σI)2 + 2u′σUI

σQ′I = σQI − q′σ2I
σU ′I = σUI − u′σ2I

σQ′U ′ = −u′σQI − q′σUI + quσ2I .

The correction is expected to be good to within Q/I < 0.6% and U/I < 0.6%.

3.1.12 Rotate Polarization Coordinates

The Stokes Q and U parameters, as calculated so far, reflect polarization angles measured
in detector coordinates. After the foreground polarization is removed, the parameters may
then be rotated into sky coordinates. The pipeline calculates a relative rotation angle, α,
that accounts for the vertical position angle of the instrument, the initial angle of the half-
wave plate position, and an offset position that is different for each HAWC filter. It applies
the correction to the Q and U images with a standard rotation matrix, such that:

Q′ = cos(α)Q+ sin(α)U

U ′ = sin(α)Q− cos(α)U.

The errors and covariances become:

σ′Q =
√

(cos(α)σQ)2 + (sin(α)σU)2 + 2cos(α)sin(α)σQU

σ′U =
√

(sin(α)σQ)2 + (cos(α)σU)2 − 2cos(α)sin(α)σQU

σQ′I = cos(α)σQI + sin(α)σUI

σU ′I = sin(α)σQI − cos(α)σUI

σQ′U ′ = cos(α)sin(α)(σ2Q − σ2U) + (sin2(α)− cos2(α))σQU .

HAWC+ GO Data Handbook
Rev. B

3.1.13 Calibrate Flux

The pipeline now converts the flux units from instrumental counts to physical units of
Jansky per pixel (Jy/pixel). For each filter band, the instrument team determines a cali-
bration factor in Jy/pixel/counts appropriate to data that has been opacity-corrected to
the reference zenith angle and altitude.

The calibration factors are computed in a manner similar to that for another SOFIA
instrument (FORCAST), taking into account that HAWC+ is a bolometer, not a photon-
counting device. Measured photometry is compared to the theoretical fluxes of objects
(standards) whose spectra are assumed to be known. The predicted fluxes in each HAWC+
passband are computed by multiplying the model spectrum by the overall response curve
of the telescope and instrument system and integrating over the filter passband. For
HAWC+, the standards used to date include Uranus, Neptune, Ganymede, Callisto, Ceres,
and Pallas. The models of the first four objects were obtained from the Herschel project
(see Mueller et al. 2016). Standard thermal models are used for Ceres and Pallas. All
models are scaled to match the distances of the objects at the time of the observations.
Calibration factors computed from these standards are then corrected by a color correction
factor based on the mean and pivot wavelengths of each passband, such that the output
flux in the calibrated data product is that of a nominal, flat spectrum source at the mean
wavelength for the filter. See the FORCAST GO Handbook, available from the SOFIA
webpage, for more details on the calibration process.

The calibration factor is directly applied to the flux in each of the Stokes I, Q, and U images.
The overall calibration is expected to be good to within about 10%. For Chop-Nod imaging
data, this factor is applied after the merge step, below.

3.1.14 Subtract Background

After chop and nod subtraction, some residual background noise may remain in the flux
images. After flat correction, some residual gain variation may remain as well. To remove
these, the pipeline reads in all images in a reduction group, and then iteratively performs
the following steps:

• Smooth and combine the input Stokes I, Q, and U images

• Compare each Stokes I image (smoothed) to the combined map to determine any
background offset or scaling

• Subtract the offset from the input (unsmoothed) Stokes I images; scale the input
Stokes I, Q, and U images

https://www.sofia.usra.edu/science/proposing-and-observing/data-products/data-resources
https://www.sofia.usra.edu/science/proposing-and-observing/data-products/data-resources

HAWC+ GO Data Handbook
Rev. B

• Compare each smoothed Stokes Q and U images to the combined map to determine
any additional background offset

• Subtract the Q and U offsets from the input Q and U images

The final determined offsets (aI , aQ, aU) and scales (b) for each file are applied to the flux
F ′ for each Stokes image as follows:

F ′I = (FI − aI)/b

F ′Q = (FQ − aQ)/b

F ′U = (FU − aU)/b

and are propagated into the associated error and covariance images appropriately.

3.1.15 Merge Images

All steps up until this point produce an output file for each input file taken at each telescope
dither position, without changing the pixelization of the input data. To combine files taken
at separate locations into a single map, the pipeline resamples the flux from each onto a
common grid, defined such that North is up and East is to the left. First, the WCS from
each input file is used to determine the sky location of all the input pixels. Then, for each
pixel in the output grid, the algorithm considers all input pixels within a given radius that
are not marked as bad pixels. It weights the input pixels by a Gaussian function of their
distance from the output grid point and, optionally, their associated errors. The value
at the output grid pixel is the weighted average of the input pixels within the considered
window. The output grid may subsample the input pixels: by default, there are 4 output
pixels for each input pixel. For flux conservation, the output flux is multiplied by the ratio
of the output pixel area to the input pixel area.

The error maps output by this algorithm are calculated from the input variances for the
pixels involved in each weighted average. That is, the output fluxes from N input pixels
are:

I ′ =

∑N
i wi,IIi
wtot,I

Q′ =

∑N
i wi,QQi
wtot,Q

U ′ =

∑N
i wi,UUi
wtot,U

HAWC+ GO Data Handbook
Rev. B

and the output errors and covariances are

σ′I =

√∑N
i (wi,Iσi,I)2

wtot,I

σ′Q =

√∑N
i (wi,Qσi,Q)2

wtot,Q

σ′U =

√∑N
i (wi,Uσi,U)2

wtot,U

σ′QI =

∑N
i wi,Qwi,Iσi,QI
wtot,Qwtot,I

σ′UI =

∑N
i wi,Uwi,Iσi,UI
wtot,Uwtot,I

σ′QU =

∑N
i wi,Qwi,Uσi,QU
wtot,Qwtot,U

where wi is the pixel weight and wtot is the sum of the weights of all input pixels.

The output from this step is a single FITS file, containing a flux and error image for each
of Stokes I, Q, and U, as well as the Stokes covariance images. An image mask is also
produced, which represents how many input pixels went into each output pixel. Because
of the weighting scheme, the values in this mask are not integers. A data table containing
demodulated data merged from all input tables is also attached to the file with extension
name MERGED DATA.

3.1.16 Compute Vectors

Using the Stokes I, Q, and U images, the pipeline now computes the polarization percentage
(p) and angle (θ) and their associated errors (σ) in the standard way. For the polarization
angle θ in degrees:

θ =
90

π
arctan

(U
Q

)
σθ =

90

π(Q2 + U2)

√
(UσQ)2 + (QσU)2 − 2QUσQU .

The percent polarization (p) and its error are calculated as

p = 100

√(Q
I

)2
+
(U
I

)2

HAWC+ GO Data Handbook
Rev. B

σp =
100

I

√
1

(Q2 + U2)

[
(QσQ)2 + (UσU)2 + 2QUσQU

]
+
[(Q

I

)2
+
(U
I

)2]
σ2I − 2

Q

I
σQI − 2

U

I
σUI .

The debiased polarization percentage (p′)is also calculated, as:

p′ =
√
p2 − σ2p.

Each of the θ, p, and p′ maps and their error images are stored as separate extensions in
the output from this step, which is the final output from the pipeline for Nod-Pol data.
This file will have 19 extensions, including the primary HDU, with extension names, types,
and numbers as follows:

• STOKES I: primary HDU, image, extension 0

• ERROR I: image, extension 1

• STOKES Q: image, extension 2

• ERROR Q: image, extension 3

• STOKES U: image, extension 4

• ERROR U: image, extension 5

• IMAGE MASK: image, extension 6

• PERCENT POL: image, extension 7

• DEBIASED PERCENT POL: image, extension 8

• ERROR PERCENT POL: image, extension 9

• POL ANGLE: image, extension 10

• ROTATED POL ANGLE: image, extension 11

• ERROR POL ANGLE: image, extension 12

• POL FLUX: image, extension 13

• ERROR POL FLUX: image, extension 14

• DEBIASED POL FLUX: image, extension 15

• MERGED DATA: table, extension 16

• POL DATA: table, extension 17

• FINAL POL DATA: table, extension 18

HAWC+ GO Data Handbook
Rev. B

The final two extensions contain table representations of the polarization values for each
pixel, as an alternate representation of the θ, p, and p′ maps. The FINAL POL DATA
table is a subset of the POL DATA table, with data quality cuts applied.

3.2 Scan Reduction Algorithms

This section covers the main algorithms used to reduce Scan mode data with CRUSH. It
is meant to give the reader an accurate, if incomplete, overview of the principal reduction
process.

3.2.1 Signal Structure

CRUSH is based on the assumption that the measured data (Xct) for detector c, recorded
at time t, is the superposition of various signal components and essential (not necessarily
white) noise nct:

Xct = Dct + g(1),cC(1),t + ...+ g(n),cC(n),t +GcM
xy
ct Sxy + nct

We can model the measured detector timestreams via a number of appropriate parame-
ters, such as 1/f drifts (Dct), n correlated noise components (C(1),t...C(n),t) and channel
responses to these (gains, g(1),c...g(n),c), and the observed source structure (Sxy). We can
derive statistically sound estimates (such as maximum-likelihood or robust estimates) for
these parameters based on the measurements themselves. As long as our model is repre-
sentative of the physical processes that generate the signals, and sufficiently complete, our
derived parameters should be able to reproduce the measured data with the precision of
the underlying limiting noise.

Below is a summary of the principal model parameters assumed by CRUSH, in gen-
eral:

• Xct: The raw timestream of channel c, measured at time t.

• Dct: The 1/f drift value of channel c at time t.

• g(1),c...g(n),c: Channel c gain (response) to correlated signals (for modes 1 through
n).

• C(1),t...C(n),t: Correlated signals (for modes 1 through n) at time t.

• Gc: The point source gain of channel c

• Mxy
ct : Scanning pattern, mapping a sky position {x, y} into a sample of channel c at

time t.

HAWC+ GO Data Handbook
Rev. B

Figure 5: Scan data reduction flowchart

HAWC+ GO Data Handbook
Rev. B

• Sxy: Actual 2D source flux at position {x, y}.

• nct: Essential limiting noise in channel c at time t.

3.2.2 Sequential Incremental Modeling and Iterations

The approach of CRUSH is to solve for each term separately, and sequentially, rather than
trying to do a brute-force matrix inversion in a single step. Such inversions are not practical
for several reasons, anyway: (1) because they require a-priori knowledge of all gains and
weights (covariance matrix) with great precision, (2) because they require bad data to
be identified prior to inversion, (3) because degeneracies are not handled in a controlled /
controllable way, (4) because linear inversions do not handle non-linearities with ease (such
as solving for both gains and signals when these form a product), (5) because of the need to
include spectral filtering, typically, and (6) because matrix inversions are computationally
costly.

Sequential modeling works on the assumption that each term can be considered indepen-
dently from one another. To a large degree this is granted as many of the signals produce
more or less orthogonal imprints in the data (e.g. you cannot easily mistake correlated
sky response seen by all channels with a per-channel DC offset). As such, from the point
of view of each term, the other terms represent but an increased level of noise. As the
terms all take turns in being estimated (usually from bright to faint) this model confusion
“noise” goes away, especially with iterations.

Even if the terms are not perfectly orthogonal to one another, and have degenerate flux
components, the sequential approach handles this naturally. Degenerate fluxes between a
pair of terms will tend to end up in the term that is estimated first. Thus, the ordering
of the estimation sequence provides a control on handling degeneracies in a simple and
intuitive manner.

A practical trick for efficient implementation is to replace the raw timestream with the
unmodeled residuals Xct → Rct, and let modeling steps produce incremental updates to
the model parameters. Every time a model parameter is updated, its incremental imprint is
removed from the residual timestream (a process we shall refer to as synchronization).

With each iteration, the incremental changes to the parameters become more insignificant,
and the residual will approach the limiting noise of the measurement.

3.2.3 DC Offset and 1/f Drift Removal

For 1/f drifts, consider only the term:

Rct ≈ δDcτ

HAWC+ GO Data Handbook
Rev. B

where δDcτ is the 1/f channel drift value for t between τ and τ+T , for a 1/f time window of
T samples. That is, we simply assume that the residuals are dominated by an unmodeled
1/f drift increment δDcτ . Note that detector DC offsets can be treated as a special case
with τ = 0, and T equal to the number of detector samples in the analysis.

We can construct a χ2 measure, as:

χ2 =
t=τ+T∑
c,t=τ

wct(Rct − δDct)
2

where wct = σ−2ct is the proper noise-weight associated with each datum. CRUSH further-
more assumes that the noise weight of every sample wct can be separated into the product
of a channel weight wc and a time weight wt, i.e. wct = wc ·wt. This assumption is identical
to that of separable noise (σct = σc · σt). Then, by setting the χ2 minimizing condition
∂χ2/∂(δDct) = 0, we arrive at the maximum-likelihood incremental update:

δDcτ =

τ+T∑
t=τ

wtRct

τ+T∑
t=τ

wt

Note, that each sample (Rct) contributes a fraction:

pct = wt/
τ+T∑
t=τ

wt

to the estimate of the single parameter δDcτ . In other words, this is how much that
parameter is dependent on each data point. Above all, pct is a fair measure of the fractional
degrees of freedom lost from each datum, due to modeling of the 1/f drifts. We will use
this information later, when estimating proper noise weights.

Note, also, that we may replace the maximum-likelihood estimate for the drift parameter
with any other statistically sound estimate (such as a weighted median), and it will not
really change the dependence, as we are still measuring the same quantity, from the same
data, as with the maximum-likelihood estimate. Therefore, the dependence calculation
remains a valid and fair estimate of the degrees of freedom lost, regardless of what statistical
estimator is used.

The removal of 1/f drifts must be mirrored in the correlated signals also if gain solutions are
to be accurate. Finally, following the removal of drifts, CRUSH will check the timestreams
for inconsistencies. For example, HAWC data is prone to discontinuous jumps in flux levels.
CRUSH will search the timestream for flux jumps, and flag or fix jump-related artifacts as
necessary.

HAWC+ GO Data Handbook
Rev. B

3.2.4 Correlated Noise Removal and Gain Estimation

For the correlated noise (mode i), we shall consider only the term with the incremental
signal parameter update:

Rct = g(i),cδC(i),t + ...

Initially, we can assume C(i),t as well as g(i),c = 1, if better values of the gain are not
independently known at the start. Accordingly, the χ2 becomes:

χ2 =
∑
c

wct(Rct − g(i),cδC(i),t)
2.

Setting the χ2 minimizing condition with respect to δC(i),t yields:

δC(i),t =

∑
c
wcg(i),cRct∑
c
wcg2(i),c

.

The dependence of this parameter on Rct is:

pct = wcg
2
(i),c/

∑
c

wcg
2
(i),c

After we update C(i) (the correlated noise model for mode i) for all frames t, we can update
the gain response as well in an analogous way, if desired. This time, consider the residuals
due to the unmodeled gain increment:

Rct = δg(i),cC(i),t + ...

and
χ2 =

∑
t

wct(Rct − δg(i),cC(i),t)
2

Minimizing it with respect to δg(i),c yields:

δg(i),c =

∑
t
wtC(i),tRct∑
t
wtC2

(i),t

which has a parameter dependence:

pct = wtC
2
(i),t/

∑
t

wtC
2
(i),t

Because the signal Ct and gain gc are a product in our model, scaling Ct by some factor
X, while dividing gc by the same factor will leave the product intact. Therefore, our

HAWC+ GO Data Handbook
Rev. B

solutions for Ct and gc are not unique. To remove this inherent degeneracy, it is practical
to enforce a normalizing condition on the gains, such that the mean gain µ(gc) = 1,
by construct. CRUSH uses a robust mean measure for gain normalization to produce
reasonable comparisons under various pathologies, such as when most gains are zero, or
when a few gains are very large compared to the others.

Once again, the maximum-likelihood estimate shown here can be replaced by other statis-
tical measures (such as a weighted median), without changing the essence.

3.2.5 Noise Weighting

Once we model out the dominant signal components, such that the residuals are starting
to approach a reasonable level of noise, we can turn our attention to determining proper
noise weights. In its simplest form, we can determine the weights based on the mean
observed variance of the residuals, normalized by the remaining degrees of freedom in the
data:

wc = ηc
N(t),c − Pc∑
t
wtR2

ct

where N(t),c is the number of unflagged data points (time samples) for channel c, and Pc is
the total number of parameters derived from channel c. The scalar value ηc is the overall
spectral filter pass correction for channel c (see section 3.2.7), which is 1 if the data was
not spectrally filtered, and 0 if the data was maximally filtered (i.e. all information is
removed). Thus typical ηc values will range between 0 and 1 for rejection filters, or can be
greater than 1 for enhancing filters. We determine time-dependent weights as:

wt =
N(c),t − Pt∑
c
wcR2

ct

Similar to the above, here N(c),t is the number of unflagged channel samples in frame t,
while Pt is the total number of parameters derived from frame t. Once again, it is practical
to enforce a normalizing condition of setting the mean time weight to unity, i.e. µ(wt) = 1.
This way, the channel weights wc have natural physical weight units, corresponding to
wc = 1/σ2c .

The total number of parameters derived from each channel, and frame, are simply the sum,
over all model parameters m, of all the parameter dependencies pct we calculated for them.
That is,

Pc =
∑
m

∑
t

p(m),ct

and
Pt =

∑
m

∑
c

p(m),ct

HAWC+ GO Data Handbook
Rev. B

Getting these lost-degrees-of-freedom measures right is critical for the stability of the so-
lutions in an iterated framework. Even slight biases in pct can grow exponentially with
iterations, leading to divergent solutions, which may manifest as over-flagging or as extreme
mapping artifacts.

Of course, one may estimate weights in different ways, such as based on the median absolute
deviation (robust weights), or based on the deviation of differences between nearby samples
(differential weights). As they all behave the same for white noise, there is really no
significant difference between them. CRUSH does, optionally, offer those different (but
comparable) methods of weight estimation.

3.2.6 Despiking

After deriving fair noise weights, we can try to identify outliers in the data (glitches and
spikes) and flag them for further analysis. Despiking is a standard procedure that need not
be discussed here in detail. CRUSH offers a few variants of the basic method, depending
on whether it looks for absolute deviations, differential deviations between nearby data, or
spikes at different resolutions (multires) at once.

3.2.7 Spectral Conditioning

Ideally, detectors would have featureless white noise spectra (at least after the 1/f noise is
treated by the drift removal). In practice, that is rarely the case. Spectral features are bad
because (a) they produce mapping features/artifacts (such as “striping”), and because (b)
they introduce a covariant noise term between map points that is not easily represented
by the output. It is therefore desirable to “whiten” the residual noise whenever possible,
to mitigate both these effects.

Noise whitening starts with measuring the effective noise spectrum in a temporal window,
significantly shorter than the integration on which it is measured. In CRUSH, the tempo-
ral window is designed to match the 1/f stability timescale T chosen for the drift removal,
since the drift removal will wipe out all features on longer timescales. With the use of such
a spectral window, we may derive a lower-resolution averaged power-spectrum for each
channel. CRUSH then identifies the white noise level, either as the mean (RMS) scalar
amplitude over a specified range of frequencies, or automatically, over an appropriate fre-
quency range occupied by the point-source signal as a result of the scanning motion.

Then, CRUSH will look for significant outliers in each spectral bin, above a specified level
(and optimally below a critical level too), and create a real-valued spectral filter profile φcf
for each channel c and frequency bin f to correct these deviations.

HAWC+ GO Data Handbook
Rev. B

There are other filters that can be applied also, such as notch filters, or a motion filter
to reject responses synchronous to the dominant telescope motion. In the end, every one
of these filters is represented by an appropriate scalar filter profile φcf , so the discussion
remains unchanged.

Once a filter profile is determined, we apply the filter by first calculating a rejected sig-
nal:

%ct = F−1[(1− φcf)R̂cf]

where R̂cf is the Fourier transform of Rct, using the weighting function provided by wt,
and F−1 denotes the inverse Fourier Transform from the spectral domain back into the
timestream. The rejected signals are removed from the residuals as:

Rct → Rct − %ct

The overall filter pass ηc for channel c, can be calculated as:

ηc =

∑
f

φ2cf

Nf

where Nf is the number of spectral bins in the profile φcf . The above is simply a measure of
the white-noise power fraction retained by the filter, which according to Parseval’s theorem,
is the same as the power fraction retained in the timestream, or the scaling of the observed
noise variances as a result of filtering.

3.2.8 Map Making

The mapping algorithm of CRUSH implements a nearest-pixel method, whereby each data
point is mapped entirely into the map pixel that falls nearest to the given detector channel
c, at a given time t. Distributing the flux to neighboring pixels would constitute smoothing,
and as such, it is better to smooth maps explicitly by a desired amount as a later processing
step. Here,

δSxy =

∑
ct
M ct
xywcwtκcGcRct∑

ct
M ct
xywcwtκ2

cG
2
c

where M ct
xy associates each sample {c, t} uniquely with a map pixel {x, y}, and is effectively

the transpose of the mapping function defined earlier. κc is the point-source filtering (pass)
fraction of the pipeline. It can be thought of as a single scalar version of the transfer
function. Its purpose is to measure how isolated point-source peaks respond to the various
reduction steps, and correct for it. When done correctly, point source peaks will always
stay perfectly cross-calibrated between different reductions, regardless of what reduction

HAWC+ GO Data Handbook
Rev. B

steps were used in each case. More generally, a reasonable quality of cross-calibration (to
within 10%) extends to compact and slightly extended sources (typically up to about half
of the field-of-view (FoV) in size). While corrections for more extended structures (≥ FoV)
are possible to a certain degree, they come at the price of steeply increasing noise at the
larger scales.

The map-making algorithm should skip over any data that is unsuitable for quality map-
making (such as too-fast scanning that may smear a source). For formal treatment, we can
just assume that Mxy

ct = 0 for any troublesome data.

Calculating the precise dependence of each map point Sxy on the timestream data Rct
is computationally costly to the extreme. Instead, CRUSH gets by with the approxima-
tion:

pct ≈ Nxy ·
wt∑
t
wt
· wcκ2

cGc∑
c
wcκ2

cG
2
c

This approximation is good as long as most map points are covered with a representative
collection of pixels, and as long as the pixel sensitivities are more or less uniformly dis-
tributed over the field of view. So far, the inexact nature of this approximation has not
produced divergent behavior with any of the dozen or more instruments that CRUSH is
being used with. Its inaccuracy is of no grave concern as a result.

We can also calculate the flux uncertainty in the map σxy at each point {x, y} as:

σ2xy = 1/
∑
ct

M ct
xywcwtκ2

cG
2
c

Source models are first derived from each input scan separately. These may be despiked
and filtered, if necessary, before added to the global increment with an appropriate noise
weight (based on the observed map noise) if source weighting is desired.

Once the global increment is complete, we can add it to the prior source model S
r(0)
xy and

subject it to further conditioning, especially in the intermediate iterations. Conditioning
operations may include smoothing, spatial filtering, redundancy flagging, noise or exposure
clipping, signal-to-noise blanking, or explicit source masking. Once the model is processed

into a finalized S′xy, we synchronize the incremental change δS′xy = S′xy − S
r(0)
xy to the

residuals:
Rct → Rct −Mxy

ct (δGcS
r(0)
xy +GcδS

′
xy)

Note, again, that δS′xy 6= δSxy. That is, the incremental change in the conditioned source
model is not the same as the raw increment derived above. Also, since the source gains
Gc may have changed since the last source model update, we must also re-synchronize the

prior source model S
(0)
xy with the incremental source gain changes δGc (first term inside the

brackets).

HAWC+ GO Data Handbook
Rev. B

Typically, CRUSH operates under the assumption that the point-source gains Gc of the
detectors are closely related to the observed sky-noise gains gc derived from the correlated
noise for all channels. Specifically, CRUSH treats the point-source gains as the prod-
uct:

Gc = εcgcgse
−τ

where εc is the point-source coupling efficiency. It measures the ratio of point-source gains
to sky-noise gains (or extended source gains). Generally, CRUSH will assume εc = 1, unless
these values are measured and loaded during the scan validation sequence. Optionally,
CRUSH can also derive εc from the observed response to a source structure, provided the
scan pattern is sufficient to move significant source flux over all detectors. The source gains
also include a correction for atmospheric attenuation, for an optical depth τ , in-band and
in the line of sight. Finally, a gain term gs for each input scan may be used as a calibration
scaling/correction on a per-scan basis.

3.2.9 Point-Source Flux Corrections

We mentioned point-source corrections in the section above; here, we explain how these
are calculated. First, consider drift removal. Its effect on point source fluxes is a reduction
by a factor:

κD,c ≈ 1− τpnt
T

In terms of the 1/f drift removal time constant T and the typical point-source crossing
time τpnt. Clearly, the effect of 1/f drift removal is smaller the faster one scans across the
source, and becomes negligible when τpnt � T .

The effect of correlated-noise removal, over some group of channels of mode i, is a little
more complex. It is calculated as:

κ(i),c = 1− 1

N(i),t
(P(i),c +

∑
k

ΩckP(i),k)

where Ωck is the overlap between channels c and k. That is, Ωck is the fraction of the point
source peak measured by channel c when the source is centered on channel k. N(i),t is the
number of correlated noise-samples that have been derived for the given mode (usually the
same as the number of time samples in the analysis). The correlated model’s dependence
on channel c is:

P(i),c =
∑
t

p(i),ct

Finally, the point-source filter correction due to spectral filtering is calculated based on the
average point-source spectrum produced by the scanning. Gaussian source profiles with

HAWC+ GO Data Handbook
Rev. B

spatial spread σx ≈ FWHM/2.35 produce a typical temporal spread σt ≈ σx/v̄, in terms
of the mean scanning speed v̄. In frequency space, this translates to a Gaussian frequency
spread of σf = (2πσt)

−1, and thus a point-source frequency profile of:

Ψf ≈ e−f
2/(2σ2

f)

More generally, Ψf may be complex-valued (asymmetric beam). Accordingly, the point-
source filter correction due to filtering with φf is generally:

κφ,c ≈

∑
f

Re(φfΨfφf)∑
f

Re(Ψf)

The compound point source filtering effect from m model components is the product of
the individual model corrections, i.e.:

κc =
∏
m

κ(m),c

This concludes the discussion of the principal reduction algorithms of CRUSH for HAWC
Scan mode data. For more information, see the resources listed in section 3.3.

3.2.10 CRUSH output

Since the CRUSH algorithms are iterative, there are no well-defined intermediate products
that may be written to disk. For Scan mode data, the pipeline takes as input a set of raw
Level 0 HAWC FITS files, described in section 3.1.1, and writes as output a single FITS file
containing an image of the source map, and several other extensions. The primary HDU in
the output file contains the flux image (EXTNAME = SIGNAL) in units of Jy/pixel. The
first extension (EXTNAME = EXPOSURE) contains an image of the nominal exposure
time in seconds at each point in the map. The second extension (EXTNAME = NOISE)
holds the error image corresponding to the flux map, and the third extension (EXTNAME
= S/N) is the signal-to-noise ratio of the flux to the error image. The fourth and further
extensions contain binary tables of data, one for each input scan.

3.3 Other Resources

For more information on the code or algorithms used in the HAWC DRP or the CRUSH
pipelines, see the following documents:

DRP:

HAWC+ GO Data Handbook
Rev. B

• Far-infrared polarimetry analysis: Hildebrand et. al. 2000 PASP, 112, 1215

• DRP infrastructure and image viewer: Berthoud, M. 2013 ADASS XXII, 475, 193

CRUSH:

• CRUSH paper: Kovács, A. 2008, Proc. SPIE, 7020, 45

• CRUSH thesis: Kovács, A. 2006, PhD Thesis, Caltech

• Online documentation: http://www.sigmyne.com/crush/

4 Data Products

4.1 File names

Output files from the HAWC pipeline are named according to the convention:

FILENAME = F[flight] HA [mode] [aorid] [spectel] [type] [fn1 [-fn2]].fits

where flight is the SOFIA flight number, HA indicates the instrument (HAWC+), and mode
is either IMA for imaging observations, POL for polarization observations, or CAL for di-
agnostic data. The aorid indicates the SOFIA program and observation number; spectel
indicates the filter/band and the HWP setting. The type is a three-letter identifier for the
pipeline product type, and fn1 and fn2 are the first and last raw file numbers that were com-
bined to produce the output product. For example, a polarization map data product with
AOR-ID 81 0131 04 derived from files 5 to 6 of flight 295, taken in Band A with HWP in the
A position would have the filename F0295 HA POL 81013104 HAWAHWPA PMP 005-
006.fits. See the tables below for a list of all possible values for the three-letter product
type.

4.2 Data format

Most HAWC data is stored in FITS files, conforming to the FITS standard (Pence et al.
2010). Each FITS file contains a primary Header Data Unit (HDU) which may contain
the most appropriate image data for that particular data reduction level. Most files have
additional data stored in HDU image or table extensions. All keywords describing the
file are in the header of the primary HDU. Each HDU also has a minimal header and is
identified by the EXTNAME header keyword. The algorithm descriptions, above, give
more information about the content of each extension.

http://iopscience.iop.org/article/10.1086/316613
http://adsabs.harvard.edu/abs/2013ASPC..475..193B
http://adsabs.harvard.edu/abs/2008SPIE.7020E..45K
http://adsabs.harvard.edu/abs/2006PhDT........28K
http://www.sigmyne.com/crush/

HAWC+ GO Data Handbook
Rev. B

4.3 Pipeline products

The following tables list all intermediate and final products that may be generated by the
HAWC pipeline, in the order in which they are produced for each mode. The product type
is stored in the primary header, under the keyword PRODTYPE. By default, for Nod-Pol
mode, the dmdall, wcs, calibrate, and polmap products are saved. For Chop-Nod mode,
the dmdall, wcs, and calibrate products are saved. For Scan mode, only the crush product
is produced or saved.

For Nod-Pol data, the pipeline also generates two auxiliary products: a polarization map
image in PNG format, with polarization vectors plotted over the Stokes I image, and a
polarization vector file in DS9 region format, for displaying with FITS images. These
products are alternate representations of the data in the FINAL POL DATA table in the
polarization map (PMP) FITS file. They may be distributed to GOs separately from the
FITS file products.

Table 1: Nod-Pol mode intermediate and final pipeline data products

Step Description PRODTYPE PROCSTAT Identifier Saved

Make Flat Flat generated from Int.Cal file obsflat LEVEL 2 OFT Y
Demodulate Chops subtracted dmdall LEVEL 1 DMA Y
Flat Correct Flat field correction applied flat LEVEL 2 FLA N
Align Arrays R array shifted to T array shift LEVEL 2 SFT N
Split Images Data split by nod, HWP split LEVEL 2 SPL N

Combine Images Chop cycles combined combine LEVEL 2 CMB N
Subtract Beams Nod beams subtracted nodpolsub LEVEL 2 NPS N
Compute Stokes Stokes parameters calculated stokes LEVEL 2 STK N

Update WCS WCS added to header wcs LEVEL 2 WCS Y
Correct Opacity Corrected for atmospheric opacity opacitymodel LEVEL 2 OPC N

Subtract IP Instrumental polarization removed ip LEVEL 2 IPS N
Rotate Coordinates Polarization angle corrected to sky rotate LEVEL 2 ROT N

Calibrate Flux Flux calibrated to physical units calibrate LEVEL 3 CAL Y
Subtract Background Residual background removed bgsubtract LEVEL 3 BGS N

Merge Images Dithers merged to single map merge LEVEL 3 MRG N
Compute Vectors Polarization vectors calculated polmap LEVEL 4 PMP Y

HAWC+ GO Data Handbook
Rev. B

Table 2: Chop-Nod mode intermediate and final pipeline data products

Step Description PRODTYPE PROCSTAT Identifier Saved

Make Flat Flat generated from Int.Cal file obsflat LEVEL 2 OFT Y
Demodulate Chops subtracted dmdall LEVEL 1 DMA Y
Flat Correct Flat field correction applied flat LEVEL 2 FLA N
Align Arrays R array shifted to T array shift LEVEL 2 SFT Y
Split Images Data split by nod, HWP split LEVEL 2 SPL N

Combine Images Chop cycles combined combine LEVEL 2 CMB N
Subtract Beams Nod beams subtracted nodpolsub LEVEL 2 NPS N
Compute Stokes Stokes parameters calculated stokes LEVEL 2 STK N

Update WCS WCS added to header wcs LEVEL 2 WCS Y
Correct Opacity Corrected for atmospheric opacity opacitymodel LEVEL 2 OPC N

Subtract Background Residual background removed bgsubtract LEVEL 2 BGS N
Merge Images Dithers merged to single map merge LEVEL 2 MRG N
Calibrate Flux Flux calibrated to physical units calibrate LEVEL 3 CAL Y

Table 3: Scan mode final pipeline data product

Step Description PRODTYPE PROCSTAT Identifier Saved

CRUSH Source model derived iteratively with CRUSH crush LEVEL 3 CRH Y

	Introduction
	SI Observing Modes Supported
	HAWC+ Instrument Information
	HAWC+ Observing Modes

	Algorithm Description
	Chop-Nod and Nod-Pol Reduction Algorithms
	Prepare
	Demodulate
	Flat Correct
	Align Arrays
	Split Images
	Combine Images
	Subtract Beams
	Compute Stokes
	Update WCS
	Correct for Atmospheric Opacity
	Subtract Instrumental Polarization
	Rotate Polarization Coordinates
	Calibrate Flux
	Subtract Background
	Merge Images
	Compute Vectors

	Scan Reduction Algorithms
	Signal Structure
	Sequential Incremental Modeling and Iterations
	DC Offset and 1/f Drift Removal
	Correlated Noise Removal and Gain Estimation
	Noise Weighting
	Despiking
	Spectral Conditioning
	Map Making
	Point-Source Flux Corrections
	CRUSH output

	Other Resources

	Data Products
	File names
	Data format
	Pipeline products

