

Cosmic History in a Nutshell

TIMELINE OF THE INFLATIONARY UNIVERSE

... And Many Open Questions

How, where and when first collapse to stars?

- How are the various wavelength-defined coeval galaxy populations related?
- How do galaxy populations evolve?
- What controls "evolution" in individual galaxies?
 - Gas accretion, interaction, mergers, internal dynamics? Entanglement of accretion and astration

Helou-Asilomar SOFIA 2010

Definitions and Disclaimers

"Intermediate redshifts" are roughly 0<z<1
 Galaxies are at the tail-end of the "golden age" of SF
 Mechanics of galaxy evolution are likely same as z~1, so the intermediate z is key to earlier times

Sensitivity assumptions are quite liberal
 SOFIA's goal is to facilitate breakthrough technology

Helou-Asilomar SOFIA 2010

Three Chapters

© FIR Fine-Structure Lines: OI, CII, OIII

- Making Sense of Galaxies
- Molecular Hydrogen

Helou-Asilomar SOFIA 2010

FIR Fine-Structure Lines

OI, OIII, CII as key indicators of ISM gas conditions CII deficiency in high-intensity SF systems CII-Aromatic connection

Herschel is rewriting the book on FIR FSL

Helou-Asilomar SOFIA 2010

FIR Fine Structure Lines Summary

Complex structure of lines calls for well resolved spectroscopy

"CII deficiency" may include self-absorption as well as intrinsic factors

- Interpreting these lines in simple terms of singlezone emitting regions will be clearly inadequate
- SOFIA can contribute with high-resolution spectroscopy of critical lines

Helou-Asilomar SOFIA 2010

Three Chapters

© FIR Fine-Structure Lines: OI, CII, OIII

Making Sense of Galaxies
 Continuum and Mid-IR FSL from Spitzer

Molecular Hydrogen

Helou-Asilomar SOFIA 2010

Conceptual Infrared Galaxies (1)

- \odot $\overrightarrow{\mathrm{IR}(\lambda)} = [\mathrm{T}_{\mathrm{ISM}}] \cdot \overrightarrow{\mathrm{Heating}(\lambda)}$
- ${\ensuremath{\, \ensuremath{ \$
- \odot IR(λ) is the Infrared SED, i.e. Cooling
 - + escaping radiation from stars (ignore gas cooling)
- T is a matrix with all the coupling terms between Heating and Cooling

Cross-sections, opacities, etc

Geometry(local, initial), geometry(age), geometry(d/g), geometry(morphology), etc

Helou-Asilomar SOFIA 2010

Conceptual Infrared Galaxies (2)

IR(λ) = [T_{ISM}]·Heating(λ) simplifications:
Most drastic approximation is `L(IR) = k·SFR"
More useful for extracting information: Heating = Σ IUV(>13.6eV)+FUV(>6eV)+NUV+Vis+NIR
Σ is taken over stars in various age groups
IR(λ) = Σ SED(dust species, U range, λ)
Dust {VSG, Aromatics, LG} at U=0.1--10⁶G₀
IT_{ISM}] connects star populations to dust emission via ISM phases
Biggest challenge is geometry, but galaxy size helps!

Estimating [T_{ISM}]

- It should be possible to derive [T_{ISM}] today, using dust models, radiative transfer codes & IR(λ) maps. For instance:
 - FUV(>6eV) originates in **B stars** mostly, heats dust in HII regions, <u>PDR</u>, with some escape into diffuse ISM
 - IR emissions from **PDR** is typical of U≈100–1000, Aromatics—rich dust, n≈100–1000
- ${\ensuremath{\mathfrak{O}}}$ Use IR SED and resolved IR(λ) maps in MW and nearby galaxies to validate estimates
 - Take out geometry by averaging over many cases
 - $\left[T_{\text{ISM}} \right]$ elements not universal, but it should be possible to index them on basic galaxy parameters
 - Estimate [T_{ISM}]⁻¹ and a sequence of SFR indicators

Helou-Asilomar SOFIA 2010

Conceptual Galaxies: Gas Phase

[T_{ISM}] can be applied to gas phase diagnostics, though additional terms are needed to connect radiation to gas

Ionization coupling

Photo-electric coupling

- SOFIA opportunity is here: spectrally well resolved line diagnostics will add this dimension
- A However, mechanical excitation terms appear, not directly traceable to Heating(λ)

Shocks, turbulence

Helou-Asilomar SOFIA 2010

Conceptual Galaxies: Radio, X-Ray, ...

Mostly derived from SN, possibly stellar winds

© Coupling terms are much further removed from [T_{ISM}]

New parameters enter, e.g. magnetic field

Time-dependent terms, e.g. cooling CR, plasma

Helou-Asilomar SOFIA 2010

Empirical Galaxies

Making Sense of Correlations

 In the case of line correlations, spectrally wellresolved data are critical, and good maps of local sources are important

Again pointing to high-resolution spectroscopy

Helou-Asilomar SOFIA 2010

H₂: Spitzer Data

Figure 13

Soifer, Helou & Werner AARA 2008

Compilation of H₂ measurements for normal galaxies (Roussel et al. 2007), ULIRGs (Higdon et al. 2006), and a variety of other objects. The ratio of the luminosity in the sum of the S(1), S(2) and S(3) lines (of the ground vibration state) of H₂ to the IR luminosity of the system is plotted versus the IR luminosity. Nearby galaxies are shown as open symbols, diamonds represent dwarf galaxies, triangles represent star-forming galaxies with no other type of activity, and squares represent galaxies with Seyfert or LINER nuclei. ULIRGs are shown as crosses. Gray lines of constant H₂ luminosity (10⁶, 10⁸, and 10¹⁰ L_{\odot}) show that, in spite of the variations in L_{11}/L_{ir} , ULIRGs are still more luminous in H₂ rotational lines, whereas intergalactic shocks can easily outshine whole galaxies in these lines.

Molecular Hydrogen Excess Emission

- ${\ensuremath{\, \ensuremath{ \$
- Most likely common thread is shock excitement, but many questions remain
 - Main puzzle is how molecular material can be the main coolant for a violent injection of mechanical power

Helou-Asilomar SOFIA 2010

H₂: What Might SOFIA Do?

- How is it excited? (shocks? turbulence? other?)
- What is role of dust? What is time dependence of luminosity? Any coincident star formation?
- To shed light on excitation mechanisms we need better spatial and high (≥10⁴) spectral resolution spectroscopy in the range 20–60µm (17µm to z~1)

This H₂ signature may well be the best way to detect earliest collapse of gas clouds to form galaxies

Helou-Asilomar SOFIA 2010

Summary

- SOFIA high (≥10⁴) spectral resolution spectroscopy in the range 20–100µm will address several important questions
- Challenges within reach:
 - solve for the star/dust heating/cooling matrix
 - advance on physical underpinning of correlations and decorrelations
 - construct higher-fidelity ISM physical representations (as basis for population models)

Helou-Asilomar SOFIA 2010

