Imaging the Galactic Center: The Submillimeter Array

ALMA Coming (AgrandMA)

<u>ASIAA</u>

SOFIA 06.07.2010

Outline

- Nearest Example of SMBH: SgrA*
- Circumnuclear Disk (CND)
- The Submillimeter Array
- Images of Galactic Center Region
- Future in this Field

SOFIA DRMCS: CND at Galactic Center

Morris, Erickson, Chuss, Stacey, Staguhn (2008) Instruments: EXES, FORCAST, FIFI-LS, GREAT, CASMIR, HAWC

Region: 4pc x 2pc

white contours: HCN (Christopher et al. 2005)green conttours: 6cm continuumColor: 2-8 kev X-ray

IMAGING Problem from 35 years ago!

Science Driver: Black Hole + Accretion Disk

Core of Galaxy NGC 4261

Hubble Space Telescope Wide Field / Planetary Camera

Ground-Based Optical/Radio Image

380 Arc Seconds 88,000 LIGHTYEARS

17 Arc Seconds 400 LIGHTYEARS

Radio Galaxy: Cygnus A

A Central Black Hole is ejecting Powerful Jets

SOFIA Workshop 06.07.10

Milky Way "Twin" NGC 7331

Petitpas et al. 2008

SOFIA Workshop 06.07.10

Center of the Milky Way

Dynamical Evidence of SMBH

Summary Simulation from MPE Group

SOFIA Workshop 06.07.10

CND: HCN(1-0) in the Galactic Center

Historical Data:

Hat Creek 11" x 9"

HCN(1-0) in Next BIMA Synthesis

13" x 4"

Wright et al. 2001, ApJ, 551, 254 SOFIA Workshop 06.07.10

CO (7-6) in the Galactic Center

CSO 11"

SOFIA Workshop 06.07.10

VLA NH₃ (3,3) and BIMA HCN (1-0)

14

More HCN(1-0) Imaging of GC CND

Is it a Disk? Ring? Streamers?

Contours: HCN(1-0) (Christopher et al., 2005, ApJ, 622, 346).

Greys: H₂(1-0) (Yusef-Zadeh et al., 2001, ApJ, 560, 749).

New HCN(4-3) Imaging of GC CND

16

mm and submm Interferometers >30 Years of development

SOFIA Workshop 06.07.10

Top of Mauna Kea

Submillimeter Telescopes

SubMillimeter Array

- **1984: Proposal to Smithsonian Institution**
- **1987:** Submillimeter Receiver Lab Funded
- **1989: Design Study Funded**
- **1991: Construction Money Funding 6 Elements**
- **1996:** ASIAA Joins Project by Adding 2 Elements
- **1998:** First Fringes at Westford with 2 Prototypes
- **1999:** First Fringes on Mauna Kea
- 2003: All 8 Elements Deployed; Array Completed

Why Submillimeter?

- Universe is Cold: CMB (3K); ISM (~10K)
- 10 K Energy Peak @ FIR (100 μm) submm (300-1000 μm) from the ground
- ISM/dust is optically opaque submm can penetrate the dust
- Existence of Abundant Molecules submm has many spectroscopic tools
- Universe is Expanding submm sees the Redshifted Distant Universe

Moving to SubMillimeter

Mauna Kea: 4000m

Dust:
$$S_v \propto v^4$$

For v^2 Dust Emissivity Rayleigh-Jeans Limit for Blackbody Radiation

Spectral Lines: S $\propto v^5$

For Optically Thin Lines Einstein A $\propto v^3$ Integrated Line Intensity

Spectroscopy & Interferometry CO J=2-1 emission from V Hya

IMAGING : R Sculptoris

ATCA: HCN J=1-0

Detached Spherical CO Shell around an AGB Star + a Core

D.V. Trung

RIGHT ASCENSION (J2000)

SOFIA Workshop

06.07.10

Field of View/Resolution

Field of View/Angular Resolution

Frequency (GHz)	Primary Beam FWHM	Spatial Resolution					
		Compact	Extended	Very			
		Array	Array	Ext. Array			
230	~52"	~3"	~1"	~0.4"			
345	~35"	~2"	~0.7"	~0.3"			
690	~17"	~1"	~0.35"	~0.15"			
(CSO: 3 beams; JCMT: 6 beams)							
>0.1M pixels, >12000 synthesized beams per pointing SOFIA Workshop 06.07.10 2							

Do See Many Lines

Submm Line Forest as Expected: Higher Einstein A

Spectral Coverage and Resolution

Bandwi	dth	Velocity Resolution (km/s)		
		230 GHz	345 GHz	690 GHz
Full Continuum	2 GHz / sideband	2600	1740	869
Standard Spectral Res.	~800 kHz	1	0.7	0.35
Maximum* Spectral Res.	~200 kHz	0.25	0.175	0.09

Maximum Resolving Power of >3,000,000

Galactic Center Circumnuclear Disk

- Origin of CND?
- Stability of CND?
- Feeding of Central Black Hole?

Vollmer & Duschl 2002, A&A 388, 128

SOFIA Workshop

Herrnstein & Ho 2005, ApJ, 620, 287 06.07.10

HCN(1-0) in the Galactic Center

CND Clumpy, Incomplete. Shocked

HCN(1-0) in contours (Christopher et al., 2005, ApJ, 622, 346).

 $H_2(1-0)$ in grey scales (Yusef-Zadeh et al., 2001, ApJ, 560, 749).

SOFIA Workshop 06.07.10

Sgr A^{*}

SMA Observations: HCN(4-3) and CS(7-6)

HCN(4-3) in the Galactic Center

Compared to Single Dish Results Convolving SMA map to JCMT 15" beam

HCN(4-3) SMA

HCN(4-3) JCMT

06.07.10

61% of JCMT flux recovered

SOFIA Workshop

Marshall et al. 1995, MNRAS, 277, 594

34

Overall Rotation of CND

Spectra show: Missing Flux Problem Double Peaked Lines Asymmetric Profiles

 $V_{rot} \sim 110 \text{ km/s}$ $P_{rot} \sim 8 \times 10^4 \text{ yrs}$

Comparison with 6cm Continuum

HCN CND fits around the MINI SPIRAL

HCN(4-3) in color.

6cm Continuum in contours (Yusef-Zadeh & Morris 1987, ApJ, 320, 545). Ν

Comparison with HCN(1-0)

Overall Agreement HCN 4-3 shows more complete "Ring"

Relative Intensities Different

HCN(4-3) in contours. HCN(1-0) inn color (Christopher et al., 2005, ApJ, 622, 346).

HCN 4-3 Overcomes Absorption

Black Contours: HCN(4-3)

Velocity (km/s)

Red Contours: HCN(1-0) (Christopher et al. 2005, ApJ, 622, 346) SOFIA Workshop 06.07.10

HCN(4-3)/HCN(1-0) Ratio

HCN(4-3)/HCN(1-0) Ratio $-NH_3(3,3)$

Warmer HCN is Also Tracked by NH₃ (3,3)

HCN(4-3)/HCN(1-0) Ratio in color.

NH₃(3,3) in contours (McGary, Coil & Ho 2001, ApJ, 559, 326).

Comparison with NH₃(3,3)

NH₃(3,3): narrower lines,

HCN: broader lines

 $NH_3(3,3)$ in thick line (McGary et al. 2001) HCN(1-0) in thin lines (Wright et al. 2001) 42

HCN(4-3)/HCN(1-0) Ratio – NH_(6.6)

Excited Eastern Side of CND Continues toward SgrA* Vicinity

HCN(4-3)/HCN(1-0) Raio in color.

 $NH_3(6,6)$ in contours (Herrnstein & Ho 2002, ApJ, 579, L83).

Comparison with NH₃(6,6)

HCN: Narrower Lines $NH_3(6,6)$: Broader Lines

NH₃(6,6) spectra (Herrnstein & Ho 2002)

NH₃(6,6) spectra (Herrnstein & Ho 2002)

SOFIA Workshop 06.07.10 44

CS(7-6) in the Galactic Center

CS Kinematics

4 More SMA Molecules Mapped

(Montero-Castano et al. 2009)

Excitation in the CND

Molecules:

CN, HCN, CS: dense H_2CO , HC_3N : diffuse SiO: shock

Martin et al. 2009

SOFIA Workshop 06.07.10

Summary of Current Thinking on CND

- Clumpy, Line Widths > 20 km s⁻¹, Mass > $10^3 M_{\odot}$
- Virial Density > 3 x 10^7 cm⁻³ \rightarrow Clumps within CND stable against Tidal Shear
- Excitation within CND non-uniform, warmer in the southern part
- Hot gas, >300K, inside CND
- Accretion time towards SgrA* >9 x 10⁶ yrs, longer than CND rotation time ~ 8 x 10⁴ yrs

CND Not a Transient Structure

Combine VLA and GBT in NH₃ (3,3)

Must Improve Imaging

SOFIA Workshop 06.07.10

Higher Excitation with SOFIA

KAO: 37.7μm (5.7") and OI 63μm (20")

Summary

- At 3" resolution, Submillimeter Lines, sensitive to high temperature and high density, see inside the CND
- The "Submillimeter Advantage", Einstein A coefficient (S ∝ v⁵) and Rayleigh-Jeans Grey-Blackbody Radiation (S_v ∝ v⁴), will be even more important in the FIR
- SOFIA can do a lot for Galactic Center studies, and not only in the CND