[OI] 63µm GREAT observations in massive star forming region: G5.89-0.39

Silvia Leurini (MPIfR, Bonn) F. Wyrowski, H. Wiesemeyer, R. Güsten, K. Menten (MPIfR, Bonn) A. Gusdorf, M. Gerin, F. Levrier (LERMA, Paris)

Radioastronomie

Motivations

[OI] 63 µm is

- Major coolant in PDRs (e.g., Tielens & Dalgarno 1985) ⇒ tracer of physics of the gas;
- 2. Major coolant in jets from YSOs \Rightarrow direct tracer of mass-loss rates (Hollenbach 1985);
- Important PDR cooling line in external galaxies (e.g., Malhotra et al. 2001; Coppin et al. 2012) not affected by extinction ⇒ potentially a powerful tracer of star-formation rates in galaxies even at high red-shifts (e.g, De Looze et al. 2014).

SOFIA Ringberg 15-18 March 2015

Motivations

BUT

absorption from foreground clouds and self-absorption can contaminate the profile and mine the diagnostic power of [OI] (e.g., Poglitsch et al. 1996; Liseau et al. 2006)

⇒ spectroscopically resolved
observations of the [OI] 63 µm line are
fundamental to exploit its full potential

DR21OH [OI] 63 µm spectrum KAO (Poglitsch et al. 1996)

für Radioastronomie

SOFIA GREAT observations G5.89-0.39

G5.89-0.39 hosts

- ✤ a UCHII from a O8 star (Feldt+2003)
- one of the most extreme massive outflows (Harvey & Forveille 1988)
- compact EHV N-S and NW-SE outflows associated with HV H₂ emission (Puga+2006; Hunter+2008; Su+2012)

für Radioastronomie

SOFIA GREAT observations G5.89-0.39

G5.89-0.39 hosts

- ✤ a UCHII from a O8 star (Feldt+2003)
- one of the most extreme massive outflows (Harvey & Forveille 1988)
- compact EHV N-S and NW-SE outflows associated with HV H₂ emission (Puga+2006; Hunter+2008; Su+2012)

Max-Planck-Institut für Radioastronomie

- ✤ [OI] 63 µm 18"×18" map
- ✤ CO(16-15) 18"×18" map
- OH triplets single pointings at 2514 GHz, 1838 GHz and 1834 GHz
- **Complementary data**
- APEX CO(6-5)/(7-6) maps (Gusdorf +2015)
- Herschel HIFI H₂O (752 GHz, 987 GHz, 1113 GHz, 1661 GHz, 1669 GHz) (Gusdorf+2015, van der Tak+2013)

+ HV emission ($|v_{max}-v_{lsr}| \simeq 70 \text{ km s}^{-1}$)

deep absorptions from the source and from different line of sight clouds;

Max-Planck-Institut für Radioastronomie

[OI] distribution in G5.89-0.39

- HV emission distributes along the north-south as CO
- + HV emission arises from the inner region of EHV outflows in CO(3-2) (Su+2012)
- HV emission is more compact (<6".6 beam) than EHV CO outflows</p>

Radioastronomie

Outflow parameters

	Blue	Red
$N(10^{21}{\rm cm}^{-2})$	3.2	
$M(M_{\odot})$	0.05	
$\Delta v_{\rm max} ({\rm km s^{-1}})$	50	58
$t_d(yr)$	400	350
$P(M_{\odot}\mathrm{kms^{-1}})$	2.4	
$F_m (M_\odot \mathrm{km}\mathrm{s}^{-1}\mathrm{yr}^{-1})$	0.006	
$E_k (10^{45} \mathrm{erg})$	1.2	
$L_{mech}(L_{\odot})$	24	

Mass-loss rate estimate:

I. from Hollenbach 1985

$$\frac{\dot{M}}{M_{\odot}yr^{-1}} = 10^{-4} \frac{L_{\rm [OI]\,63\,\mu m}}{L_{\odot}}$$

 $\simeq 2.5 \ 10^{-4} \ M_\odot yr^{-1}$

II. from simple geometry assumptions

$$\dot{M} = \frac{M}{t_d} > 0.9 \ 10^{-4} \,\mathrm{M_{\odot}yr^{-1}}$$

in good agreement with each other and with estimates from CO (Gusdorf+2015) ⇒ the molecular outflow in G5.89-0.39 is likely driven by the [OI] atomic jet

für Radioastronomie

Atomic and molecular spectra

SOFIA Ringberg 15-18 March 2015

Far-IR line luminosity

- I. Over the whole profile [OI] contributes $\approx 50\%$ to the total line L_{FIR} together with CO
- II. At HV, [OI] is the main contributor (5.1 L $_{\odot}$) to the line L_{FIR} followed by CO (~1.3 L $_{\odot}$)
- III. H₂O is not a significant contributor even at HV

This work (14".5 beam)								
Velocity range	$L_{CO(16-15)}$	$L_{\rm OH}{}^a$	$L_{\rm H_2O}^{b}$	$L_{\rm OI63\mu m}$	$L_{\rm CII}$	L _{FIRL}		
	(L_{\odot})	(L_{\odot})	(L_{\odot})	(L_{\odot})	(L_{\odot})	(L_{\odot})		
total profile	0.65	0.44	_	5.6	0.42	7.15		
HV-red	—	0.08	0.03	0.85	0.02	0.99		
LV-red	0.06	0.13	0.09	1.15	0.06	1.5		
green	0.42	0.12	0.08^{c}	_	0.1	0.72		
HV-blue	_	_	_	0.04	_	0.04		
LV-blue	0.17	-	—	5.13	0.2	5.5		
Values from Karska et al. (2014) (9".4 beam)								
Velocity range	$L_{\rm CO}^d$	L_{OH}^{e}	$L_{\rm H_2O}^{e}$	$L_{OI63\mu m}^{f}$				
total profile	3.9	0.5	0.8	3.7	-	8.8		

Conclusions

In G5.89-0.39:

- [OI] at 63 µm is heavily contaminated by absorption at low velocities;
- ICULT IN TERMS INTERMS I
- The outflow(s) in G5.89-0.39 is likely driven by the atomic jet traced in [OI];
- [OI] is the major contributor to the line far-IR cooling budget at HV

Future perspectives

A larger **sample of massive YSOs** in different evolutionary phase: open time cycle 3 project on ATLASGAL sources+P.I. time project on W3(OH)/W3(H₂O))

ATLASGAL sources

SOFIA Ringberg 15-18 March 2015