A FAR-IR DETERMINATION OF GAS MASS AND CARBON DEPLETION IN PROTOPLANETAERY DISKS

+ future directions with SOFIA...

Credit: NASA

Melissa McClure (Fellow, ESO Garching)

Mass measurements in protoplanetary DISKS FROM HYDROGEN DEUTERIDE

SIGNIFICANCE OF GAS MASS

- outcome of cloud collapse
- fundamental disk property
- determines planet formation outcomes: number, size, system architecture
- MMSN = 0.01 M_{sun}, but wide range

Problems with measurement of gas mass.

GAS MASS TRACERS (1)

May overestimate gas mass.

Draine (2006)

DISK GAS MASS TRACERS (2)

 $M_{CO} \propto N_{CO}$ $M_{CO} = 2 \times 10^{-4} M_{H2}$

May underestimate gas mass due to:

- photodissociation and freeze-out
- isotope selective photodissociation
- chemical depletion

(Williams & Best 2014; Miotello et al. 2014, 2016; Favre et al. 2013)

DISK GAS MASS TRACERS (3)

HD (isotope of H_2), D/H=1.5x10⁻⁵ in local bubble

No freeze-out or chemical depletion, depends on T(R,z)

TW Hya M_{gas} (from HD) = 0.06 $M_{\odot} > M_{gas}$ (from CO). Chemical depletion of CO?

(Linsky et al. 1998; Bergin et al. 2013)

SAMPLE & OBSERVATIONS

McClure et al. (2016)

HD line profile & flux

Bethell & Bergin (2009), Bruderer et al. (2012, 2013)

EFFECT OF TEMPERATURE STRUCTURE ON HD LINE

99% dust settling

50% dust settling

McClure et al. (2016)

EFFECT OF SURFACE DENSITY AND FINAL MASSES

Decrease Σ (M_{dust} fixed to submillimeter photometry)

M_{dust}: GM Aur: 12.5 ×10⁻⁴ M_☉ DMTau: 2.9 ×10⁻⁴ M_☉

Mgas: GM Aur: 0.025-0.204 M DMTau: 0.01-0.047 M_o

McClure et al. (2016)

Comparison with other disks VIA DUST-GAS CONVERSION

Massive!

M_{disk}/M_{star} ~0.02-0.2

Upper limits of 0.009-0.03 M_☉ for two non-detections.

100x M_{dust} ~Mgas

 M_{gas} (from M_{dust})

Comparison with CO-derived Gas masses

Value	DM Tau	GM Aur
M _{gas} (from HD) [M₀]	0.01-0.04 7	0.025-0.20 4
M _{gas} (from CO*) [M₀]	1.4×10 ⁻³	<0.35×10 ⁻³
M _{gas} (from CO**) [M₀]	9.0×10 ⁻³	_

Model with no CO photodissocation or freeze-out: 7-33x, 70-600x less

Model with **photodissocation & freeze-out:** I-5x less mass

McClure et al. (2016) *Dutrey et al. (1996) **Williams & Best (2014)

EVIDENCE FOR CHEMICAL DEPLETION OF CARBON?

DM Tau:

HD M_{gas} up to 5x CO M_{gas} measurement. Likely CO chemical depletion.

GM Aur:

CO depletion $>\sim$ 600, corrected to 100 if scaled for photodissociation/freeze-out.

How realistic are these depletion factors?

CO-DEPLETION IN TW HYA

Accepted follow-up proposal (**PI Schwarz**, McClure co-I, grade A) to confirm CO depletion and masses of DM Tau and GM Aur.

WHERE IS THE DEPLETED CO?

Schwarz et al. (2016), Yu et al. (2016):

- formation of complex organics depletes gas phase CO
- COMs freeze-out on grains

IMPLICATIONS FOR CO DEPLETION

Gas/dust ratios $< 10^{2}$ from ALMA survey; CO chemical depletion? Global gas/dust = 20-165 for DMTau, GM Aur

Need more HD measurements in disks to confirm!

CHALLENGE OF LARGER SAMPLE

Line flux increases with decreasing continuum flux.

current instruments (e.g. FIFI-LS).

FUTURE POSSIBILITIES

Upcoming far-IR instruments with improved sensitivity:

- HIRMES SOFIA 3rd generation spectrograph (see Neufeld talk); 2019, R~100,000(?) additionally resolve line
- SAFARI SPICA's far-IR spectrograph (2029)
- Origins Far-IR Surveyor (2030+)

CONCLUSIONS

- M_{gas}~0.02-0.2 M_☉ (GM Aur) and ~0.01-0.05 M_☉ (DM Tau)
- CO gas phase chemical depletion ~5-100x
- Combine HD with other line observations (e.g. range of CO lines) for more precise masses/depletion factors
- 100x dust-to-gas conversion factor good approximation

Future with SOFIA-HIRMES, SPICA-SAFARI, NASA Origins Far-IR Surveyor