Large Variety of the velocity profile of C⁺, C, and CO and their column densities in N159

Yoko Okada (I. Physikalisches Insitut der Universität zu Köln) Miguel Angel Requena-Torres, Rolf Güsten, Jürgen Stutzki, Helmut Wiesemeyer, Patrick Pütz, Oliver Ricken

1. Background

- [CII]/CO is expected to be higher in low metallicity environment
- The line profile of [CII] 158µm is often very different from that of CO lines → complex origin of the line emission

Spatially and velocity-resolved mapping observations in star-forming regions LMC

2. Observations

- OTF mapping with 6" step size, 4'x(3'-4') area covering N159 W and E
- SOFIA/GREAT + APEX/FLASH⁺&CHAMP⁺

Line	Frequency [GHz]	Instrument	$\eta_{ m f}^{ m a}$	$\eta_{ m mb}^{ m b}$	HPBW ^c ["]
¹³ CO(3-2)	330.5879653	FLASH ⁺	0.95	0.69	19.0
CO(3-2)	345.7959899	$FLASH^{+}$	0.95	0.69	18.2
CO(4-3)	461.0407682	FLASH ⁺	0.95	0.61	13.6
$[C_{I}]^{3}P_{1}-^{3}P_{0}$	492.1606510	$FLASH^{+}$	0.95	0.6	12.8
CO(6-5)	691.4730763	CHAMP ⁺ LFA	0.95	0.42	8.8
$[C_1]^3P_2-^3P_1$	809.3419700	CHAMP ⁺ HFA	0.95	0.38	7.7
[N II]	1461.1338000	GREAT L1	0.97	0.67	18.3
[C п]	1900.5369000	GREAT L2	0.97	0.67	14.1

Image : blue Contour : CO(1-0)

Johansson et al. (1998)

2. Observations

- OTF mapping with 6" step size, 4'x(3'-4') area covering N159 W and E
- SOFIA/GREAT + APEX/FLASH⁺&CHAMP⁺

Line	Frequency [GHz]	Instrument	$\eta_{ m f}^{ m a}$	$\eta_{ m mb}^{ m b}$	HPBW ^c ["]
¹³ CO(3-2)	330.5879653	FLASH ⁺	0.95	0.69	19.0
CO(3-2)	345.7959899	$FLASH^{+}$	0.95	0.69	18.2
CO(4-3)	461.0407682	FLASH ⁺	0.95	0.61	13.6
$[C_{I}]^{3}P_{1}-^{3}P_{0}$	492.1606510	$FLASH^{+}$	0.95	0.6	12.8
CO(6-5)	691.4730763	CHAMP ⁺ LFA	0.95	0.42	8.8
$[C_1]^3P_2-^3P_1$	809.3419700	CHAMP ⁺ HFA	0.95	0.38	7.7
[N II]	1461.1338000	GREAT L1	0.97	0.67	18.3
[C п]	1900.5369000	GREAT L2	0.97	0.67	14.1

GREAT observations

- New Zealand deployment (2013)
- [CII]: 4 flights (1.5h+2h+0.3h+0.2h)
- [NII]: first 2 flights
- XFFTS (2.5GHz bandwidth, 44kHz resolution)

3. Results

• Convolved to 1 km/s velocity resolution and 20" spatial resolution

Result 1 – Line profile

Sum of fitted Gaussians

Gaussian fit to CO(3-2) 1 or 2 Gaussians

Use the center and width to fit the other emission lines

Spatial variation 20-50%

Result 2 – Column density fraction

CO: ${}^{12}CO(3-2)/{}^{13}CO(3-2) \rightarrow \tau \rightarrow T_{ex}$

C: Constant T_{ex} (consistent with $[CI]^3P_2-^3P_1/^3P_1-^3P_0$)

 C^+ : Constant T_{ex} (optically thick at the peak positions)

N(CO), N(C), N(C⁺) for each velocity bin!

Result 3 – the ionized gas contribution to [CII]

[CII] [K km s⁻¹]

[NII]/[CII] = 0.02 Maximum possible contribution of the ionized gas to the [CII] emission = 30%

Summary

• Observations : Velocity resolved mapping observations of [CII], [NII], CO, [CI] in LMC/N159

- Line profile : 20-50% of [CII] emission cannot be fitted by the CO line profile → ablating from the dense cores or additional gas component
- Column density in each velocity bin : C⁺ dominates the velocity range far from the line center / the region located between the CO cores
- The ionized gas contribution to [CII] : [NII]/[CII] suggests ≤ 19% at [CII] peak, ≤ 30% where [NII] is detected, ≤ 15% over the whole observed region