Mysterious fine structure lines in S140

Volker Ossenkopf, Evgenia Koumpia, Yoko Okada, Bhaswati Mookerjea, Floris van der Tak, Robert Simon, Rolf Güsten

KOSMA (Kölner Observatorium für SubMm Astronomie), I. Physikalisches Institut, Universität zu Köln

V. Ossenkopf

Ringberg Workshop on Spectroscopy with SOFIA

- S140 properties
- [OI] and [CII] GREAT observations
- Complementary data
- Line profiles
- Properties of the main emission source
- The line-to-continuum cooling balance
- Comparison to PDR model

Well-studied molecular cloud:

• External PDR (G₀=250) and deeply embedded star-formation (IRS1-3):

Ringberg Workshop on Spectroscopy with SOFIA

S140

Herschel/PACS and SOFIA/FORECAST observations:

• IRS1 as the central source with 10000L

FORECAST map (11, 31, 37µm)

• Drives molecular outflow (Maud et al. 2013)

S140

Herschel/HIFI observations of [CII] and many other lines:

- Confirm outflow from IRS1
- [CII] strong at interface, weaker, but pronounced at IRS1

GREAT observations

First [OI] 63µm observations in 2014:

 [OI] strongly peaked, but peak offset by 20" from IRS1

[OI] peak intensity

V. Ossenkopf

GREAT observations

[OI] peak confirmed by [CII] map and comparison to PACS:

 Both fine structure lines do NOT peak at the main source (IRS1) but 20" north, close to IRS2

Integrated [OI] (colours) and [CII] contours

CO lines

IRAM maps of low-J CO, GREAT observations of CO 16-15

- Low-J lines peak around at IRS1
- CO 16-15 extended between IRS1 and IRS2

CO 2-1 with contours of [CII] (peak intensity)

8

Line profiles

[OI] with clear self-absorption, [CII] also partially optically thick

Different velocity components towards IRS2 and interface+IRS1

V. Ossenkopf

Ringberg Workshop on Spectroscopy with SOFIA

Source properties

Fit of peak by Gaussian intensity profile

- Resolved in [OI]: FWHM = 8.3" = 0.03pc,
 - [OI]: 76 K km/s, 0.28 L_{\odot}
 - [CII]: 212 K km/s, $0.05 L_{\odot}$
 - CO 16-15: 46 K km/s, 0.01 L_{\odot} compare embedded heating: 2000 L_{\odot}

 $M = 2.3 M_{\odot}$

Original maps of [OI], [CII], CO 16-15 (contours) and after source subtraction (colors)

Cooling balance

Ratio between line and continuum cooling

- Should measure gas heating efficiency
- IRS1/2/3: factor 100 lower than in most PDRs (0.001-0.01- [CII]/TIR)
- Reminiscent of line deficiency in ULIRGS

PDR model interpretation

Comparison with plane-parallel PDR model (Kaufman 1999)

- [OI]/[CII] ratio:
 - 3.0 at IRS1, 2.7 at IRS2

3/18/15

 $[0 I] 63 \mu m / [C II] 158 \mu m$

Comparison with plane-parallel PDR model (Kaufman 1999)

- ([CII]+[OI])/FIR
 - 2 10⁻⁵ at IRS1, 2 10⁻⁴ at IRS2
 - -> 0.02 at interface

n (cm⁻³)

PDR model interpretation

Comparison with plane-parallel PDR model (Kaufman 1999)

 [CII] integrated intensity [erg s⁻¹ cm⁻² sr⁻¹] [C II] 158 μ m Intensity -0.0005 at IRS1, 0.0017 at IRS2 10⁶ 0.0015 -0.0011 at interface 10^{5} 50 0.0015 10⁴ ່ວ cm⁻² G₀ 10³ ∆ð [arcsec] 0 0.0010 erg 10^{2} [] [0.0005] 10^{1} -50 1.0E-0 60 -20 -40 -60 -80 40 20 0 10^{2} 10^{4} 10⁵ 10^{6} 10^{1} 103 10' $\Delta \alpha$ [arcsec] $n (cm^{-3})$

[CII] intensity (colors) and [OI]+[CII] intensity (contours from 0.0005...0.005)

Ringberg Workshop on Spectroscopy with SOFIA

Summary

• IRS1:

- Main energy source of the region produces almost no [CII] and [OI]
- > FS lines suggest density of 300 cm⁻³, but dust emission requires 10⁶ cm⁻³
- IRS2:
 - Prominent [CII] and [OI] peak, spatially resolved
 - > Velocity offset from main cloud (-6.5km/s instead of -8 km/s)
 - [CII] intensity requires 10⁵ cm⁻³, dust 10⁶ cm⁻³, [OI] 300 cm⁻³
 - > Please tell me what this source is!
- Whole cluster:
 - Extremely low line to continuum ratio: line deficiency
- Interface:
 - Inclination by 83° needed to explain strong [CII] emission
 - Low [OI] possibly due to density gradient
 - Consistent with external PDR