Sniffing Alien Atmospheres

Exoplanet Spectrophotometry from Ground-, Airborneand Space-based Observatories

Credit: NICT

Dr. Daniel Angerhausen

(CSH, Uni Bern) SOFIA tele talk 31/1/2018

@dan_anger

My journey

Currently: Center for Space and Habitability Fellow at Bern University Founder and Executive Director *explainables.org* Science Communication

-University Cologne (Diploma) -Caltech/ NASA-JPL (DAAD fellow) -German SOFIA Institute (Phd) -Hamburg Observatory (1 y PD) -RPI, NY NAI Center for Astrobiology (2y PD) -NASA postdoctoral program (2 y) 2

Exoplanets: A very old question

Epicurus (341-270 BC):

"...there are infinite worlds both like and unlike this world of ours."

Giordano Bruno (1584):

"...there are countless suns and countless earths all rotating around their suns."

Isaac Newton (1713): "And if the fixed stars are the centers of similar systems, they will all be constructed according to a similar design ..."

Exoplanets: A very old guestion

Move over, Tatooine! Amateurs discover planet with four suns

By Ed Payne, CNN updated 6:10 PM EDT, Tue October 16, 2012

'Saturn on Steroids': 1st Ringed Planet Beyond Solar System Possibly Found January 12, 2012 07:47am ET

by Charles Q. Choi, Space.com Contributor Is the Nearest Alien Planet Proxima b Habitable? 'It's Complicated'

By Jesse Emspak, Space.com Contributor | August 31, 2016 01:27pm ET

Population of Known Alien Planets Nearly Doubles as NASA Discovers 715 New Worlds By Mike Wall, Senior Writer | February 26, 2014 01:01pm ET

Why is it so difficult?

Stars are larger brighter than planets

>>> indirect methods or methods that cancel out the stellar contribution

Differential photometry

Differences between observations in and out of occultation reveal information about the planet

Differential photometry

Differences between observations in and out of occultation reveal information about the planet

0.5

Table 5 Derived brightness temperatures (\mathcal{T}_{+}) geometric and hand albedos $(\mathcal{A}_{+}, \mathcal{A}_{+})$						
equilibrium temperatures T_{eq} for $f = \frac{1}{4}$ and $\frac{2}{2}$ and night-side temperature						
T_{night}						
KOI	T	<i>A</i> .	4.	T^{eq}	T^{eq}	<i>T</i>
ROI	16	лg	110	$^{1}1/4$	12/3	¹ night
1	$1901 \frac{+27}{-31}$	0.05 ± 0.01	0.08 ± 0.02	1363	1742	1885.00
2	2897^{+3}_{-4}	$0.27 \ 0\pm \ 0. \ 0$	0.4 ± 0.0	1892	2418	2235.00
3	1382_{-0}^{+0}	$0.01\pm$ 0. 0	$0.01\pm$ 0. 0	825	1054	0. 0
7	1713^{+562}_{-1614}	0.01 ± 0.11	0.01 ± 0.16	1624	2075	0.0
10	$2241 \frac{+61}{-77}$	$0.11 \ 0 \pm \ 0.03$	$0.16 ~ 0 \pm ~ 0.04$	1536	1963	1859.00
17	$2060 \frac{+70}{-95}$	0.07 ± 0.03	$0.11 \ 0 \pm \ 0.04$	1413	1806	1719.00
18	2305^{+46}_{-52}	$0.16 ~ 0 \pm ~ 0.03$	$0.25~0\pm~0.05$	1429	1826	2169.00
20	$2121 \frac{+54}{-67}$	0.09 ± 0.02	$0.14 ~ 0 \pm ~ 0.04$	1422	1817	1711.00
97	$2547 \frac{+26}{-28}$	$0.32 \ 0 \pm \ 0.03$	$0.48 ~ 0 \pm ~ 0.04$	1364	1743	0.0
98	2146_{-148}^{+96}	0.06 ± 0.03	0.09 ± 0.04	1634	2089	2139.00
128	1861^{+177}_{-1762}	0.05 ± 0.07	0.07 ± 0.11	1234	1577	1857.00
135	2296^{+73}_{-95}	0.06 ± 0.02	0.09 ± 0.03	1930	2467	0.0
137	$1948 \frac{+831}{-1849}$	$0.24 \ 0\pm 5.$	$0.35~0\pm~7.5$	854	1092	1938.00
196	$2395 \pm 50 \\ 58$	$0.18 \ 0 \pm \ 0.03$	$0.27~0\pm~0.05$	1513	1933	0.0
203	$2247 \frac{+35}{-40}$	0.08 ± 0.01	$0.13~0\pm~0.02$	1660	2121	2229.00
204	2348^{+149}_{-279}	$0.28 \ 0 \pm \ 0.19$	$0.42 \ 0 \pm \ 0.29$	1217	1555	2347.00
428	2331_{-626}^{+193}	$0.09 \pm\ 0.08$	$0.13 ~ 0 \pm ~ 0.13$	1774	2267	2327.00

(Angerhausen, DeLarme & Morse, PASP, 2015)

-collaboration with SUNY Albany (Ben Placek, now: WIT)

-bayesian phase curve modelling & retrieval code EXONEST

THE ASTROPHYSICAL JOURNAL, 795:112 (15pp), 2014 November 10 © 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

doi:10.1088/0004-637X/795/2/112

EXONEST: BAYESIAN MODEL SELECTION APPLIED TO THE DETECTION AND CHARACTERIZATION OF EXOPLANETS VIA PHOTOMETRIC VARIATIONS

BEN PLACEK¹, KEVIN H. KNUTH^{1,3}, AND DANIEL ANGERHAUSEN² ¹ Physics Department, University at Albany (SUNY), Albany, NY 12222, USA; bplacek@albany.edu, kknuth@albany.edu ² Department of Physics, Applied Physics, and Astronomy, Rensselear Polytechnic Institute, Troy, NY 12180, USA; daniel.angerhausen@gmail.com Received 2013 October 24; accepted 2014 August 13; published 2014 October 20

EXONEST

Kepler-91b; Placek, Knuth & Angerhausen, ApJ, 2015b

TESS + Kepler; Placek, Knuth & Angerhausen, ApJ, 2016

'Beachball' mapping; Chontos, Angerhausen & Placek, in prep

Exo-moons; Heller et al., A&A, 2016

Statistical evidence for 'Exo-Trojans'

Hippke & Angerhausen, ApJ, 2015

Kepler sees hints of asteroids pursuing planets near other stars

-First evidence for "Exo-Trojans" (Hippke & Angerhausen, ApJ, 2015)

A STATISTICAL SEARCH FOR A POPULATION OF EXO-TROJANS IN THE KEPLER DATASET

MICHAEL HIPPKE Luiter Straße 21b, 47506 Neukirchen-Vluyn, Germany

Daniel Angerhausen

NASA Postdoctoral Program Fellow, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA Draft version August 4, 2015

(NIR-) Spectrophotometry

(Knutson 2008)

Primary transit:

Probing terminator Broadband depth: ~ 1 % Spectral features: ~ 10⁻⁴

Secondary eclipse:

Probing dayside Broadband depth: ~ 0.1 % Spectral features: ~ 10⁻⁴

Hot Jupiters

Hot Jupiters

K. B. Stevenson (2014)

Phase-resolved emission spectrum of WASP-43b 61 orbits with HST-WFC3

Super Earth vs Mini Neptun

Future: Biomarkers

Most promising: Oxygen and methane

....like gradstudents and pizza

(credit: Shawn DG)

Future: Biomarkers

Title: Exoplanet Biosignatures: Observational Prospects Short title: Observational Prospects for Biosignatures

Yuka Fujii^{1,2}, Daniel Angerhausen³, Russell Deitrick^{4,5}, Shawn Domagal-Goldman^{5,6}, John Lee Grenfell⁷, Yasunori Hori⁸, Enric Palle^{9,10}, Nicholas Siegler^{11,12}, Karl Stapelfeldt^{11,12}, Heike Rauer^{7,13}

White paper for the National Academies of Science (NAS) Astrobiology Science Strategy for the Search for Life in the Universe

Life Beyond the Solar System: Remotely Detectable Biosignatures

Shawn Domagal-Goldman¹, Nancy Y. Kiang², Niki Parenteau³, David C. Catling⁴, Shiladitya DasSarma⁵, Yuka Fujii⁶, Chester E. Harman⁷, Adrian Lenardic⁸, Enric Pallé⁹, Christopher T. Reinhard¹⁰, Edward W. Schwieterman¹¹, Jean Schneider¹², Harrison B. Smith¹³, Motohide Tamura¹⁴, Daniel Angerhausen¹⁵, Giada Arney¹, Theresa Fisher¹³, Hilairy E. Hartnett¹³, Yasunori Hori¹⁶, Betul Kaçar¹⁷, Timothy Lyons¹¹, Norio Narita¹⁸, Heike Rauer¹⁹, Sarah Rugheimer²⁰, Nick Siegler²¹, Evgenya L. Shkolnik¹³, Karl R. Stapelfeldt²²

Ground-Based

Ground-Based

~2006 - first generation IFU: SINFONI @ VLT OSIRIS @ Keck

Since 2015 - New MOS: KMOS @ VLT MOSFIRE @ Keck

Airborne-based: SOFIA

ENOUGH IS ENOUGH... I'VE HAD IT WITH THESE Ground based observations

Advantages for transit-observations:

- -wavelength regime
- -mobility
- -less atmosphere
- -dedicated instrumentation
- (Angerhausen et al. 2011, McElwain et al. 2013)

OBSERVATOR

SOFIA – first transit

-First exoplanet observation: 1 October 2013 with FLIPO (FLITECAM & HIPO)

-transit of HD189733b

-"space based" quality

Decorrelation via PCA

observational Parameters (PSF, "weather", telemetry etc.)

\rightarrow principle components

Advantages: solves degeneracies between parameters, reduces number of fitting parameters Disadvantage: loss of physical insight

SOFIA – comparison

(~ 1.5 photon noise; 185/160 ppm: Angerhausen et al. JATIS, 2015)

25

SOFIA – GJ 1214b

Transit spectrophotometry of GJ1214b (2.7 Re) in Paschen alpha With FLITECAM Paschen alpha, red/blue with HIPO, I band with FPI+ (Angerhausen et al. 2017, A&A)

SOFIA – challenges

Sept 2015: transit of GJ3740b ('warm Uranus") in Paschen alpha with FLITECAM imager and I band with FPI

SOFIA observation in practice: -flight planning constrains -instruments not very well suited -competition with MIR/FIR -HIPO & FLITECAM n/a

NIMBUS

The Near-Infrared Multi-Band Ultraprecise Spectroimager for SOFIA

LW band images on detector array

NIMBUS

The Near-Infrared Multi-Band Ultraprecise Spectroimager for SOFIA

29

Future: What about a balloon?

Future: CHEOPS/TESS/JWST

From TESS/CHEOPS to JWST

You Tube 'Exoplanet observations with SOFIA' https://www.youtube.com/watch?v=y-W3xoOu0NE

Backup Slides

Kepler: Trojans

FIG. 2.— The initial superstack shows no significant dips at the Lagrangian points.

upper limit to the average Trojan transiting Area (per planet) corresponding to one body of radius < 460km Sub sample selection: If "dip" at L4 take second half of lightcurve and vice versa

FIG. 4.— Cross-check of sub-sample selection artifacts. In each line, we select those data that have a dip on one side of phase space, and plot their flux only for the other half of phase space.

36

Kepler: Trojans

Kepler sees hints of asteroids pursuing planets near other stars

-First evidence for "Exo-Trojans" (Hippke & Angerhausen, ApJ, 2015)

-sub-sample exhibits a clear dip at both L4 and L5, with a maximum depth of 2ppm (970km radius equivalent) -weak distance correlation

CHEOPS/TESS/JWST connection

WEATHER ON HOT JUPITERS

1000+ TESS-provided sample

- Compare hot (~0.05AU) and cooler (0.1-0.2AU) systems
- Determine radiation time scales
- Measure temperature with altitude

FORMATION AND MIGRATION OF NEPTUNES

700+ TESS-provided sample

- Evaluate gas fraction vs. remnant core
- Differentiate atmospheric composition based on migration models

WET SUPER EARTHS

100+ TESS-provided sample

- Compare hot Super Earth's around the late type K stars and cooler Super Earths around mid-late M stars
- Investigate signs of habitability

(NIR-) Spectrophotometry

-every lightcurve represents the spectral value at its particular wavelength, putting them together reveals the spectrum

- "comparison" with models show molecule abundances and T-P profile of the planet