Carbon lines towards Orion A

Pedro Salas K. L. Emig, C. Pabst, S. Cuadrado, J. Goicoechea, J. B. R. Oonk, M. C. Toribio, H. Röttgering, X. Tielens

> SOFIA tele-talk, 4 March 2020

Photodissociation regions

Figure 31.2 Structure of a PDR at the interface between an H II region and a dense molecular cloud.

Draine's ISM book

Photodissociation regions

Figure 31.2 Structure of a PDR at the interface between an H II region and a dense molecular cloud.

Draine's ISM book

- PDRs are everywhere in the ISM.
- PDRs in the interface between HII regions and molecular clouds are bright (e.g., Orion).
- They are great laboratories for studying ISM's physics.
- Emission from Orion-like PDRs dominates the IR spectrum of galaxies.
- They are used to interpret observations.

Photodissociation regions

¹²CO(2–1), ¹³CO(2–1), C¹⁸O(2–1). Yamagishi+2019

- PDRs are everywhere in the ISM.
- PDRs in the interface between HII regions and molecular clouds are bright (e.g., Orion).
- They are great laboratories for studying ISM's physics.
- Emission from Orion-like PDRs dominates the IR spectrum of galaxies.
- They are used to interpret observations.

Photodissociation regions

Rybak+2019

- PDRs are everywhere in the ISM.
- PDRs in the interface between HII regions and molecular clouds are bright (e.g., Orion).
- They are great laboratories for studying ISM's physics.
- Emission from Orion-like PDRs dominates the IR spectrum of galaxies.
- They are used to interpret observations.

Motivation

• Previous studies (e.g., Natta+1994, Tsivilev 2014) showed that the gas physical properties (density and temperature) can be determined by using CRRLs and the FIR [CII] line.

 \rightarrow How does this change in light of new observations and models?

 \rightarrow Can we isolate the cold gas using the velocity information?

- If we can determine the physical properties of the gas, What is the gas heating efficiency?
- What is the pressure in the atomic layers of the Orion bar PDR?

Carbon radio recombination lines

• Line intensity:

$$I \propto (T_{\rm gas} b_{n'} + T_{\rm bkgd} b_n \beta_{nn'}) T_{\rm gas}^{-2.5} E M_{\rm C^+}$$

- \rightarrow Spontaneous emission.
- $\rightarrow\,$ Stimulated emission and absorption.
- $\rightarrow b_n$ and $\beta_{nn'}$ depend on atomic physics and physical conditions.

Oonk+2017 8/27

Oonk+2017 9/27

Observations

Line	Telescope	Angular	Reference
		resolution	
[CII]	SOFIA	16"	Pabst+2019
$C30\alpha$	ALMA TP	28''	Bally+2017
$C65\alpha$	Effelsberg 100m	40''	Wyrowski+1997
$C91\alpha$	VLA	40''	Wyrowski+1997
C137–280 α	GBT	4.5'-41'	Salas+2019
$C351\alpha$	LOFAR	3'	$Salas{+}2019$
$C40\alpha$	IRAM 30m	25"	Cuadrado+2019
C50eta	IRAM 30m	25''	Cuadrado+2019
$C60\gamma$	IRAM 30m	$29^{\prime\prime}$	Cuadrado+2019

Orion's bar

Orion's bar

Bron+2018

Orion's veil

Orion's veil

CRRL spectra

Orion's veil [CII] and CRRLs

Salas+2019 23/27

Orion's veil

Salas+2019 24 / 27

Gas heating efficiency

Salas+2019 25 / 27

Summary

- PDRs are important as tools and laboratories to understand the ISM.
- Through FIR [CII] and CRRLs we can study the C⁺/CI interface in PDRs; its kinematics and energetics.
- We will study a larger sample of HII regions to determine how the thermal pressure and heating efficiency change with environment.
- Higher angular resolution ($\lesssim 1''$) observations of CRRLs, or atomic carbon, are required to determine the distance between the C⁺ and CO layer.

Thanks for tuning in!