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New Earth-based data sets 
to investigate lunar water

Part 1: Ground-based observations of lunar surface 
hydration

• NASA InfraRed Telescope Facility (IRTF) in Hawaii
• Address the reality of lunar hydration variations
• Enhanced hydration at central peaks

Part 2: Detection of molecular water on the sunlit Moon

• NASA/DLR Stratospheric Observatory For Infrared 
Astronomy (SOFIA) – airborne

• Search for H2O on the lunar surface
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View from Apollo: a dry Moon
Apollo samples show a depletion in volatile elements – Including H

High water contents discovered in 
• Lunar apatite [McCubbin et al., 2010]

• Pyroclastic glasses [Saal et al., 2008]

• Melt inclusions [Hauri et al., 2011]

The lunar crust is largely composed of anorthosite
• 6 ppm H2O measured [Hui et al., 2013] 

• Suggests a highly depleted lunar surface

Surface of the Moon is a blank slate for studying volatiles introduced 
after formation

Albarede et al. 2014

Saal et al. 2008
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Observations of lunar surface water
In 2009 spectrometers on 3 spacecraft detected a 3 µm absorption feature

• Chandrayaan-1 – M3 [Pieters et. al., 2009]

• Deep impact – HRI [Sunshine et. al., 2009]

• Cassini – VIMS [Clark, 2009]

Attributed to hydroxyl (OH) and/or molecular water (H2O)

Cassini – VIMS Chandrayaan-1 – M3 Deep Impact – HRI 
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Detection was 
unexpected

In 1966 experimental evidence emerged for proton-induced OH 
formation on lunar analog material [Zeller et al., 1966]

Later it was hypothesized that the formation of nanophase iron is 
caused by solar wind hydrogen producing H2O [Housley et al., 1974]

Recombinative desorption can convert OH to H2O
• laboratory experiments suggest this conversion is inefficient 

due to relatively low temperatures [Jones et a. 2018]

Micrometeorite impact provides extremely high temperatures 
• can cause efficient recombinative desorption 
• may account for the spikes in water detected in the exosphere 

by LADEE during meteor streams [Benna et al. 2019]
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Variations in the 
abundance of water

Spacecraft reflectance data show variations in band 
depth with lunar time of day

Could be caused by migration of:
• H2O [Sunshine et al., 2009 ] 

• H temporarily binding with O to form OH 
[Tucker et al., 2017, Farrell et al., 2017, Starukhina 2006]

Band depth, however, is not always abundance
Morning

Evening

Equator

Deep Impact
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Controversial 
thermal removal 
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Variation or No Variation?
3 independent studies investigate diurnal variation in M3 data - each 
coming to a different conclusion 

1. Li and Milliken 2017: strong variations at low latitude, 
asymmetric between morning and evening, little variation at 
high latitude

2. Wolher et al., 2017 and Grumpe et al., 2019: no variation 
below ~30°, strong symmetric variation above ~30°

3. Bandfield et al., 2018: no variation with time of day, 
temperature, or latitude, 3 µm band is always present

All use similar physics but subtly different assumptions regarding the 
photometric and subpixel temperature behavior

Bandfield et al., 2018

Li and Milliken 2017
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M3 data 
limit
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Spacecraft data limitations
Thermal corrections with M3 data are ambiguous

• 3 µm signal is both reflected and thermal emission
• thermal dominates at longer wavelengths

Accurate removal of thermal emission requires longer 
wavelengths beyond 3 µm

M3 is limited in spectral range 
• ends at 3 µm, the center of the OH band

Cassini and Deep Impact have low spatial resolutions and 
limited lunar time of day coverage
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30 km

New ground-based data for diurnal 
investigation

SPEX on the NASA InfraRed Telescope Facility (IRTF) on Mauna Kea
• High resolution cross dispersed spectrograph 
• Access to the entire lunar nearside 
• Access to all lunar times of day
• High spatial resolution of 1-2 km
• Covers 1.6 – 4.2 microns

The IRTF provides strong constraints on thermal emission and can 
address the reality of diurnal variation
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Data collected with the 
IRTF

6 pole-to-pole chord profiles

Times of day covered
• 6 am to 12 pm
• 6 pm

Afternoon times
Coming soon
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Data calibration

Spextool: Spectral extraction tool

• IDL-based data reduction package written by 
Cushing, et al 2014 to reduce data obtained with 
Spex on the IRTF

1. normalized flat field images and wavelength 
calibration files

2. Non-linearity correction

3. Extract apertures positions

4. Background subtraction

5. Extract spectra and wavelength calibrate

Pi
xe

ls
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Sky emission and atmospheric removal

Observe clean sky just off the Moon and subtract from the lunar spectra to remove background emissions

Observe a solar analog star (similar spectral properties as the Sun) and divide out of Moon minus sky data to correct 
atmospheric absorptions  

casey.i.honniball@nasa.gov
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Thermal removal

Lunar spectra longword of 2.5 µm are affected by thermal emission

Accurate removal of thermal radiation is vital for proper investigation 
of the 3 µm band and its spectral properties

Following the methodology used for asteroid thermal radiation 
removal defined by Takir and Emery, 2012 and Rivkin et al., 2005

• Calculate the amount of thermal emission measured in data

• Model the thermal emission

• Remove thermal component from spectrum

Presence of total water (OH + H2O) is indicated by a step down from 
2.5 to 2.9 µm 

Main belt asteroid from the IRTF

M3 data 
limit

Thermal 
emission
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Continuum and thermal excess

Lunar surfaces are affected by space weathering 
• causes spectra to have a red slope

Thermal modeling requires removal of the continuum

Thermal excess (𝛾) is the measurement of thermal flux found at all wavelengths

𝛾 =
𝑅! + 𝑇!
𝑅!

− 1

𝑅! - reflectance

𝑇! - thermal emission

For us

𝛾 =
𝑀𝑜𝑜𝑛

𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚 − 1
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Modeling thermal excess
Lunar thermal emission is not a simple blackbody 

• Multiple temperatures within the field of view caused by a rough surface

Use a rough surface thermal model to model the thermal excess [Bandfield et al., 2011]

𝛾"#$%& =
𝑅'( ∗ 𝐿⊙ + 𝑇**
𝑅'( ∗ 𝐿⊙

− 1

𝑅!" - Multispectral Imager reflectance
𝐿⊙ - Solar radiance
𝑇$$ - Rough surface blackbody

Choose the best model that fits the longer wavelengths
• removed from the lunar spectrum to produce a purely reflectance spectrum

Incorrect models over or under correct the longer wavelengths
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High temperature example
High temperature sites have much stronger thermal emissions

M3 runs into issues here

• Cannot constrain thermal models and they all look similar at 2.5 to 3 µm

Removal of the wrong model can create or remove a 3 µm band
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Abundance calculations
After thermal removal, the spectra are in reflectance and can be used 
to estimate abundance of total water (OH + H2O)

Convert reflectance to single scattering albedo (𝑤) [Hapke, 2001]

Calculate ESPAT

• Effective Single Particle Absorption Thickness: a parameter 
proportional to water abundance [Li, 2017]

𝐸𝑆𝑃𝐴𝑇 =
1 − 𝑤
𝑤

Calculate abundance

𝐻+𝑂,," = 0.8 ∗ ESPAT ∗ 10000

casey.i.honniball@nasa.gov
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Abundance calculations
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After thermal removal, the spectra are in reflectance and can be used 
to estimate abundance of total water (OH + H2O)

Convert reflectance to single scattering albedo (𝑤) [Hapke, 2001]

Calculate ESPAT

• Effective Single Particle Absorption Thickness: a parameter 
proportional to water abundance [Li, 2017]

𝐸𝑆𝑃𝐴𝑇 =
1 − 𝑤
𝑤

Calculate abundance

𝐻+𝑂,," = 0.8 ∗ ESPAT ∗ 10000
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Sensitivity of abundance to thermal model errors
Low temperature example

Thermal model selection has ~ 3 ppm error

Calculated abundances
• Optimum – 179 ppm +/- 3
• +/- 5 K error – 56 ppm
• +/- 10 K error – 116 ppm

High temperature example

Thermal model selection has < 6 ppm error

Calculated abundances
• Optimum – 103 ppm +/- 4
• +/- 5 K error – 175 ppm
• +/- 10 K error – 364 ppm

casey.i.honniball@nasa.gov
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Observed variations in the 3 µm band
Strong variations in total water (OH + H2O) along each chord

• Increasing abundances with increasing latitude

Maximum abundances ~500 ppm 
• occurs at high latitudes
• consistent with abundances observed by M3 [Li and 

Milliken 2017] 

Minimum abundances around 0 ppm
• occurs at mid-northern latitudes

Time of day (TOD) variations seen across constant latitude 
• decreasing abundance with increasing TOD

casey.i.honniball@nasa.gov
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Observed variations in the 3 µm band
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Observed variations in the 3 µm band
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Observed variations in the 3 µm band
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Indigenous
Lunar
Hydration
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Bullialdus Central Peak 
Hydration
M3 shows enhanced 3 µm hydration that is not consistent with purely 
surficial origins [Li and Milliken, 2017; Klima et al.,2013]

• Likely a magmatic source that was excavated during impact 

• Coincides with localized concentrations of thorium and norite 

80 ppm total water (OH + H2O) estimated using the original thermal 
removal procedures for M3 [Klima et al.,2013] 

• 250 ppm total water (OH + H2O) using a new thermal removal 
correction [Li and Milliken, 2017]

The central peak is only part of the crater interior showing hydration 

• May not have undergone intense degassing [Young et al., 2016] 

• Potentially preserves the internal abundance of hydration

casey.i.honniball@nasa.gov
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Observed Craters Reflectance
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Aristarchus Bullialdus Copernicus Vitello
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Total Water: Individual Stretch

Aristarchus Bullialdus Copernicus Vitello
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Total Water: Common Stretch

Aristarchus Bullialdus Copernicus Vitello
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Temperature 
Dependence
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Conclusions from IRTF data… 
SOFIA still to come

IRTF provides spectral coverage out to 4.1 µm
• Strong constrains on thermal component
• Removal of thermal emission is 

unambiguous

3 µm band varies with temperature
• Asymmetric trends about the equator 

suggest another controlling factor, 
possibly composition

Results suggest the diurnal variation is real 
• H2O or H migrating on the lunar surface
• Which is responsible is still under debate

Some central peaks show enhanced hydration
• Possibly indigenous hydration

casey.i.honniball@nasa.gov
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Is the 3 µm 
band due to 
OH or H2O? 

• OH can be converted to H2O by recombinative desorption
• Inefficient at lunar temperatures [Jones et al. 2018]

• Micrometeorite impacts provides extremely high temperatures 
• Efficient recombinative desorption of pre-existing OH

• The species responsible for the 3 µm absorption is under debate
• If OH

• H forming temporary OH bonds as it diffuses through 
lunar grains [Tucker et al., 2017, Farrell et al., 2017, Starukhina 2006]

• If H2O
• The molecule can migrate on the lunar surface
• Supply to the poles

casey.i.honniball@nasa.gov
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Prior detection of H2O

Water ice detected in permanently shadowed regions [Li et al., 
2018] 

Hematite detected at the lunar poles on illuminated surfaces 
[Li et al., 2019]

• Hematite likely requires H2O to form

Anomalous UV ratio detected at local noon by LAMP [Hendrix et 
al., 2019]

• Assuming adsorbed H2O behaves like water ice
• Consistent with the presence of < 1% monolayer of 

H2O
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3 µm data cannot distinguish OH from H2O

Both create a 3 µm band
• Symmetric and asymmetric O-H stretch
• OH bound to metal cations can mimic H2O and no 

methods exist to separate them
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New method to detect H2O

The H-O-H bend occurring at 6.07 µm is explicitly due to H2O 
• strong, narrow and well suited for detection of H2O

Used to measure the H2O content in thin section in chemical 
and geological literature [Bartholomew et al., 1980; Glew and Rath 1971; 
Newman et al., 1986; McIntosh et al., 2017]
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6 µm band has been seen on other 
planetary bodies and in laboratory spectra 
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Marchis et al., 2012

Data from RELAB Bandfield et al., 2003
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6 µm observations with SOFIA

No existing or planned lunar spacecraft capable of performing 
this unique observation

From the ground 6 µm observations are not possible due to 
Earth’s atmosphere being opaque at 6 µm

The Stratospheric Observatory For Infrared Astronomy 
(SOFIA)

flies above 95% (45,000 ft) of the atmosphere
SOFIA FORCAST instrument 

5 to 8 µm 
~1 to 2 km spatial resolution

We have conducted the first observations of the Moon at 6 µm 
to look for water
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Data Acquired
2 locations

• Mare reference at a mid-northern latitude
• Clavius crater in the south

Observations of the Moon are not typical for SOFIA
• manually calibrated by a SOFIA research scientist

SOFIA is not exempt from telluric effects 
• Corrected using ATRAN atmospheric model
• Uses the same atmospheric conditions as 

during the flight

• We receive fully calibrated and telluric corrected 
spectral frames

casey.i.honniball@nasa.gov
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First unambiguous detection 
of H2O on the sunlit lunar 

surface
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Assignment of 6 µm to H2O

Moon vs. literature [Falk, 1984]

• Survey of H-O-H band centers
• Moon band centers within the cited H-O-H band 

centers

Moon vs. meteorites
• Almost identical band shape, center, and width

Moon vs. water bearing glass
• Broader band
• Band center shifted to lower wavelengths

Differences can be from differing compositions

casey.i.honniball@nasa.gov
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Estimating abundance of H2O

Strength of 6 µm band correlates to abundance of H2O 
[Bartholomew et al., 1980; Hale and Querry, 1973; Glew and Rath 1971; Thompson, 1965; 
Newman et al., 1986; McIntosh et al., 2017]

Can be used to estimate H2O content from remote sensing data

Reflectance spectra of water bearing glass samples feature both 3 and 6 µm 
bands [Li 2017]

• Used to develop an empirical model for estimating the absolute 
abundance of H2O from the 6 µm band
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Estimated 
Abundance of H2O

About 100 to 400 ppm H2O in the 
Clavius crater region

Within 1σ of M3 abundances

Trend with latitude is due to Tycho 
crater ejecta

Not a global phenomenon
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Storing the Water
At our observing conditions, models suggest only 3 ppm H2O can be chemisorbed on grains [Poston et al., 2015]

Water resides within impact glasses which make up 30% of lunar soil [McKay et al., 1991]

• About 300 - 1300 ppm H2O in impact glass

Consistent with water produced from preexisting hydroxyl during micrometeorite impact
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Next Step – Observe More!

SOFIA Cycle 8:
• 2 hours awarded
• Anticipate spring 2021 observing
• Pilot program with 20 hours

SOFIA Cycle 9:
• Legacy program with 72 hours 

contingent on pilot program
• Asteroid program awarded 6.75 hours

IRTF
• 40 hours awarded
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What We Will Look At

The Moon at different phases

Lunar Poles

Pyroclastic deposits

Silicic Anomalies

Mantle Exposures
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Understanding the cycle of lunar water

What is the origin of lunar water?

Does water vary with temperature?

Is water concentrated at geologic locations?
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Thank you!
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