Lunar Surface Hydration:

A View from Earth

Casey I. Honniball

NASA Goddard Space Flight Center (casey.i.honniball@nasa.gov)

March 31st, 2021

New Earth-based data sets to investigate lunar water

Part 1: Ground-based observations of lunar surface hydration

- NASA InfraRed Telescope Facility (IRTF) in Hawaii
- Address the reality of lunar hydration variations
- Enhanced hydration at central peaks

Part 2: Detection of molecular water on the sunlit Moon

- NASA/DLR Stratospheric Observatory For Infrared Astronomy (SOFIA) – airborne
- Search for H₂O on the lunar surface

View from Apollo: a dry Moon

Apollo samples show a depletion in volatile elements – Including H

High water contents discovered in

- Lunar apatite [McCubbin et al., 2010]
- Pyroclastic glasses [Saal et al., 2008]
- Melt inclusions [Hauri et al., 2011]

The lunar crust is largely composed of anorthosite

- 6 ppm H₂O measured [Hui et al., 2013]
- Suggests a highly depleted lunar surface

Surface of the Moon is a blank slate for studying volatiles introduced after formation

Observations of lunar surface water

In 2009 spectrometers on 3 spacecraft detected a 3 µm absorption feature

- Chandrayaan-1 M³ [Pieters et. al., 2009]
- Deep impact HRI [Sunshine et. al., 2009]
- Cassini VIMS [Clark, 2009]

Attributed to hydroxyl (OH) and/or molecular water (H2O)

Detection was unexpected

In 1966 experimental evidence emerged for proton-induced OH formation on lunar analog material [Zeller et al., 1966]

Later it was hypothesized that the formation of nanophase iron is caused by solar wind hydrogen producing H₂O [Housley et al., 1974]

Recombinative desorption can convert OH to H₂O

• laboratory experiments suggest this conversion is inefficient due to relatively low temperatures [Jones et a. 2018]

$$O$$
 + O = O + O

Micrometeorite impact provides extremely high temperatures

- can cause efficient recombinative desorption
- may account for the spikes in water detected in the exosphere by LADEE during meteor streams [Benna et al. 2019]

Variations in the abundance of water

Spacecraft reflectance data show variations in band depth with lunar time of day

Could be caused by migration of:

- H₂O [Sunshine et al., 2009]
- H temporarily binding with O to form OH [Tucker et al., 2017, Farrell et al., 2017, Starukhina 2006]

Band depth, however, is not always abundance

Controversial thermal removal

3 µm region effected by the mixture of reflected and emitted light

Thermal component must be modeled and removed

- Thermal emission turns on around 2 microns
- Longer wavelengths heavily effected

Variation or No Variation?

3 independent studies investigate diurnal variation in M³ data - <u>each</u> <u>coming to a different conclusion</u>

- Li and Milliken 2017: strong variations at low latitude, asymmetric between morning and evening, little variation at high latitude
- 2. Wolher et al., 2017 and Grumpe et al., 2019: no variation below ~30°, strong symmetric variation above ~30°
- 3. Bandfield et al., 2018: no variation with time of day, temperature, or latitude, 3 µm band is always present

All use similar physics but subtly different assumptions regarding the photometric and subpixel temperature behavior

Spacecraft data limitations

Thermal corrections with M³ data are ambiguous

- 3 μm signal is both reflected and thermal emission
- thermal dominates at longer wavelengths

Accurate removal of thermal emission requires longer wavelengths beyond 3 µm

M³ is limited in spectral range

ends at 3 μm, the center of the OH band

Cassini and Deep Impact have low spatial resolutions and limited lunar time of day coverage

New ground-based data for diurnal investigation

SPEX on the NASA InfraRed Telescope Facility (IRTF) on Mauna Kea

- High resolution cross dispersed spectrograph
- Access to the entire lunar nearside
- Access to all lunar times of day
- High spatial resolution of 1-2 km
- Covers 1.6 4.2 microns

The IRTF provides strong constraints on thermal emission and can address the reality of diurnal variation

Data collected with the IRTF

6 pole-to-pole chord profiles

Times of day covered

- 6 am to 12 pm
- 6 pm

Afternoon times Coming soon

Data calibration

Spextool: Spectral extraction tool

- IDL-based data reduction package written by Cushing, et al 2014 to reduce data obtained with Spex on the IRTF
- 1. normalized flat field images and wavelength calibration files
- 2. Non-linearity correction
- 3. Extract apertures positions
- 4. Background subtraction
- 5. Extract spectra and wavelength calibrate

Sky emission and atmospheric removal

Observe clean sky just off the Moon and subtract from the lunar spectra to remove background emissions

Observe a solar analog star (similar spectral properties as the Sun) and divide out of Moon minus sky data to correct atmospheric absorptions

13

Thermal removal

Lunar spectra longword of 2.5 µm are affected by thermal emission

Accurate removal of thermal radiation is vital for proper investigation of the 3 µm band and its spectral properties

Following the methodology used for asteroid thermal radiation removal defined by Takir and Emery, 2012 and Rivkin et al., 2005

- Calculate the amount of thermal emission measured in data
- Model the thermal emission
- Remove thermal component from spectrum

Presence of total water (OH + H_2O) is indicated by a step down from 2.5 to 2.9 μm

Continuum and thermal excess

Lunar surfaces are affected by space weathering

causes spectra to have a red slope

Thermal modeling requires removal of the continuum

Thermal excess (γ) is the measurement of thermal flux found at all wavelengths

$$\gamma = \frac{R_{\lambda} + T_{\lambda}}{R_{\lambda}} - 1$$

 R_{λ} - reflectance

 T_{λ} - thermal emission

For us

$$\gamma = \frac{Moon}{Continuum} - 1$$

Modeling thermal excess

Lunar thermal emission is not a simple blackbody

Multiple temperatures within the field of view caused by a rough surface

Use a rough surface thermal model to model the thermal excess [Bandfield et al., 2011]

$$\gamma_{model} = \frac{R_{MI} * L_{\odot} + T_{bb}}{R_{MI} * L_{\odot}} - 1$$

 R_{MI} - Multispectral Imager reflectance

 L_{\odot} - Solar radiance

 T_{bb} - Rough surface blackbody

Choose the best model that fits the longer wavelengths

removed from the lunar spectrum to produce a purely reflectance spectrum

Incorrect models over or under correct the longer wavelengths

Modeling thermal excess

Lunar thermal emission is not a simple blackbody

Multiple temperatures within the field of view caused by a rough surface

Use a rough surface thermal model to model the thermal excess [Bandfield et al., 2011]

$$\gamma_{model} = \frac{R_{MI} * L_{\odot} + T_{bb}}{R_{MI} * L_{\odot}} - 1$$

 R_{MI} - Multispectral Imager reflectance

 L_{\odot} - Solar radiance

 T_{bb} - Rough surface blackbody

Choose the best model that fits the longer wavelengths

removed from the lunar spectrum to produce a purely reflectance spectrum

Incorrect models over or under correct the longer wavelengths

High temperature example

High temperature sites have much stronger thermal emissions

M³ runs into issues here

Cannot constrain thermal models and they all look similar at 2.5 to 3 μm

Removal of the wrong model can create or remove a 3 µm band

18

Abundance calculations

After thermal removal, the spectra are in reflectance and can be used to estimate abundance of total water (OH + H_2O)

Convert reflectance to single scattering albedo (w) [Hapke, 2001]

Calculate ESPAT

• Effective Single Particle Absorption Thickness: a parameter proportional to water abundance [Li, 2017]

$$ESPAT = \frac{1 - w}{w}$$

Calculate abundance

$$H_2 O_{ppm} = 0.8 * ESPAT * 10000$$

Abundance calculations

After thermal removal, the spectra are in reflectance and can be used to estimate abundance of total water (OH + H_2O)

Convert reflectance to single scattering albedo (w) [Hapke, 2001]

Calculate ESPAT

• Effective Single Particle Absorption Thickness: a parameter proportional to water abundance [Li, 2017]

$$ESPAT = \frac{1 - w}{w}$$

Calculate abundance

$$H_2 O_{ppm} = 0.8 * ESPAT * 10000$$

Sensitivity of abundance to thermal model errors

Low temperature example

Thermal model selection has ~ 3 ppm error

Calculated abundances

- Optimum 179 ppm +/- 3
- +/- 5 K error 56 ppm
- +/- 10 K error 116 ppm

1.4 — Optimum thermal model at 251 K — +/- 5 K thermal model — +/- 10 K

High temperature example

Thermal model selection has < 6 ppm error

Calculated abundances

- Optimum 103 ppm +/- 4
- +/- 5 K error 175 ppm
- +/- 10 K error 364 ppm

Strong variations in total water (OH + H₂O) along each chord

Increasing abundances with increasing latitude

Maximum abundances ~500 ppm

- occurs at high latitudes
- consistent with abundances observed by M³ [Li and Milliken 2017]

Minimum abundances around 0 ppm

occurs at mid-northern latitudes

Time of day (TOD) variations seen across constant latitude

decreasing abundance with increasing TOD

Strong variations in total water (OH + H₂O) along each chord

Increasing abundances with increasing latitude

Maximum abundances ~500 ppm

- occurs at high latitudes
- consistent with abundances observed by M³ [Li and Milliken 2017]

Minimum abundances around 0 ppm

occurs at mid-northern latitudes

Time of day (TOD) variations seen across constant latitude

decreasing abundance with increasing TOD

Indigenous Lunar Hydration

3 µm hydroxyl signatures

- Pyroclastic deposits
- Silicic domes
- Central peaks of some craters

Lunar samples

- Pyroclastic glass
- Melt inclusions

Hydration assumed to be derived from interior as there is a direct geologic association

These observations suggest a heterogenous distribution of hydration in the lunar interior

Bullialdus Central Peak Hydration

M³ shows enhanced 3 μm hydration that is not consistent with purely surficial origins [Li and Milliken, 2017; Klima et al.,2013]

- Likely a magmatic source that was excavated during impact
- Coincides with localized concentrations of thorium and norite

80 ppm total water (OH + H_2O) estimated using the original thermal removal procedures for M^3 [Klima et al.,2013]

• 250 ppm total water (OH + H₂O) using a new thermal removal correction [Li and Milliken, 2017]

The central peak is only part of the crater interior showing hydration

- May not have undergone intense degassing [Young et al., 2016]
- Potentially preserves the internal abundance of hydration

Observed Craters Reflectance

Total Water: Individual Stretch

30

Total Water: Common Stretch

8:13 am 7:07 am 7:54 am 6:47 am

Temperature Dependence

Conclusions from IRTF data... SOFIA still to come

IRTF provides spectral coverage out to 4.1 μm

- Strong constrains on thermal component
- Removal of thermal emission is unambiguous

3 µm band varies with temperature

 Asymmetric trends about the equator suggest another controlling factor, possibly composition

Results suggest the diurnal variation is real

- H₂O or H migrating on the lunar surface
- Which is responsible is still under debate

Some central peaks show enhanced hydration

Possibly indigenous hydration

33

ls the 3 µm band due to OH or H₂O?

- OH can be converted to H₂O by recombinative desorption
 - Inefficient at lunar temperatures [Jones et al. 2018]
- Micrometeorite impacts provides extremely high temperatures
 - Efficient recombinative desorption of pre-existing OH
- The species responsible for the 3 μm absorption is under debate
 - If OH
 - H forming temporary OH bonds as it diffuses through lunar grains [Tucker et al., 2017, Farrell et al., 2017, Starukhina 2006]
 - If H₂O
 - The molecule can migrate on the lunar surface
 - Supply to the poles

Prior detection of H₂O

Water ice detected in permanently shadowed regions [Li et al., 2018]

Hematite detected at the lunar poles on illuminated surfaces [Li et al., 2019]

Hematite likely requires H₂O to form

Anomalous UV ratio detected at local noon by LAMP [Hendrix et al., 2019]

- Assuming adsorbed H₂O behaves like water ice
- Consistent with the presence of < 1% monolayer of H₂O

3 µm data cannot distinguish OH from H₂O

Both create a 3 µm band

- Symmetric and asymmetric O-H stretch
- OH bound to metal cations can mimic H₂O and no methods exist to separate them

New method to detect H₂O

The H-O-H bend occurring at 6.07 μm is explicitly due to H₂O

strong, narrow and well suited for detection of H₂O

Used to measure the H₂O content in thin section in chemical and geological literature [Bartholomew et al., 1980; Glew and Rath 1971; Newman et al., 1986; McIntosh et al., 2017]

6 μm band has been seen on other planetary bodies and in laboratory spectra

6 μm observations with SOFIA

No existing or planned lunar spacecraft capable of performing this unique observation

From the ground 6 μ m observations are not possible due to Earth's atmosphere being opaque at 6 μ m

The Stratospheric Observatory For Infrared Astronomy (SOFIA)

flies above 95% (45,000 ft) of the atmosphere SOFIA FORCAST instrument

5 to 8 μm

~1 to 2 km spatial resolution

We have conducted the first observations of the Moon at 6 μ m to look for water

casey.i.honniball@nasa.gov

Data Acquired

2 locations

- Mare reference at a mid-northern latitude
- Clavius crater in the south

Observations of the Moon are not typical for SOFIA

• manually calibrated by a SOFIA research scientist

SOFIA is not exempt from telluric effects

- Corrected using ATRAN atmospheric model
- Uses the same atmospheric conditions as during the flight
- We receive fully calibrated and telluric corrected spectral frames

First unambiguous detection of H₂O on the sunlit lunar surface

Assignment of 6 μm to H₂O

Moon vs. literature [Falk, 1984]

- Survey of H-O-H band centers
- Moon band centers within the cited H-O-H band centers

Moon vs. meteorites

Almost identical band shape, center, and width

Moon vs. water bearing glass

- Broader band
- Band center shifted to lower wavelengths

Differences can be from differing compositions

Estimating abundance of H₂O

Strength of 6 μ m band correlates to abundance of H₂O [Bartholomew et al., 1980; Hale and Querry, 1973; Glew and Rath 1971; Thompson, 1965; Newman et al., 1986; McIntosh et al., 2017]

Can be used to estimate H₂O content from remote sensing data

Reflectance spectra of water bearing glass samples feature both 3 and 6 μ m bands [Li 2017]

• Used to develop an empirical model for estimating the absolute abundance of H_2O from the 6 μm band

Estimated Abundance of H₂O About 100 to 400 ppm H₂O in the Clavius crater region

Within 1σ of M^3 abundances

Trend with latitude is due to Tycho crater ejecta

Not a global phenomenon

Storing the Water

At our observing conditions, models suggest only 3 ppm H₂O can be chemisorbed on grains [Poston et al., 2015]

Water resides within impact glasses which make up 30% of lunar soil [McKay et al., 1991]

• About 300 - 1300 ppm H₂O in impact glass

Consistent with water produced from preexisting hydroxyl during micrometeorite impact

Next Step – Observe More!

SOFIA Cycle 8:

- 2 hours awarded
- Anticipate spring 2021 observing
- Pilot program with 20 hours

SOFIA Cycle 9:

- Legacy program with 72 hours contingent on pilot program
- Asteroid program awarded 6.75 hours

IRTF

• 40 hours awarded

What We Will Look At

The Moon at different phases

Lunar Poles

Pyroclastic deposits

Silicic Anomalies

Mantle Exposures

Understanding the cycle of lunar water

What is the origin of lunar water?

Does water vary with temperature?

Is water concentrated at geologic locations?

Thank you!

References

- J. L. Bandfield, M. J. Poston, R. L. Klima, C. S. Edwards, A prominent and ubiquitous OH/H2O feature in corrected lunar spectra. Proc. Lunar Planet. Sci. XLVIII, abstract no. 2083 (2017).
- M. Benna, D. M. Hurley, T. J. Stubbs, P. R. Mahaffy, and R. C. Elphic, "Observations of meteoroidal water in the lunar exosphere by the LADEE NMS instrument," *Lunar exploration analysis group 2015*, abstract 2059
- R. N. Clark, "Detection of Adsorbed Water and Hydroxyl on the Moon," Science, vol. 326, no. 5952, pp. 562–564, Oct. 2009.
- E. H. Hauri, T. Weinreich, A. E. Saal, M. C. Rutherford, and J. A. Van Orman, "High Pre-Eruptive Water Contents Preserved in Lunar Melt Inclusions," *Science*, vol. 333, no. 6039, pp. 213–215. Jul. 2011.
- R.M. Housley, E.H. Cirlin, N.E. Paton, & I.B. Goldberg,. (1974). Solar wind and micrometeorite alteration of the lunar regolith. In Lunar and Planetary Science Conference Proceedings (Vol. 5, pp. 2623-2642).
- A. E. Saal, E. H. Hauri, M. Lo Cascio, J. A. van Orman, M. J. Rutherford, and R. F. Cooper, "The Apollo 15 Very Low-Ti Glasses, Evidence for the Presence of Indigenous Water in the Moon's Interior," *LPSC*, vol. 39, p. 1711, Mar. 2008.
- S. Li, "Water on the lunar surface as seen by the Moon Mineralogy Mapper: 18 distribution, abundance, and origins," Dept. Earth, Environmental, and Planetary Sciences Ph.D. thesis, May 2016.
- S. Li, and R. E. Milliken (2016), An empirical thermal correction model for Moon Mineralogy Mapper data constrained by laboratory spectra and Diviner temperatures, J. Geophys. Res. Planets, 121, 2081–2107, doi:10.1002/2016JE005035.
- S. Li and R. E. Milliken, "Water on the surface of the Moon as seen by the Moon Mineralogy Mapper: Distribution, abundance, and origins," *Science Advances*, vol. 3, no. 9, p. e1701471, Sep. 2017.
- Y. Liu, Y. Guan, Y. Zhang, G. R. Rossman, J. M. Eiler, and L. A. Taylor, "Direct measurement of hydroxyl in the lunar regolith and the origin of lunar surface water," *Nature Geosci*, vol. 5, no. 11, p. 779, Nov. 2012.
- F. Marchis, J. E. Enriquez, J. P. Emery, M. Mueller, M. Baek, J. Pollock, M. Assafin, R. Vieira Martins, J. Berthier, F. Vachier, D. P. Cruikshank, L. F. Lim, D. E. Reichart, K. M. Ivarsen, J. B. Haislip, and A. P. LaCluyze, "Multiple asteroid systems: Dimensions and thermal properties from Spitzer Space Telescope and ground-based observations," *Icarus*, vol. 221, no. 2, pp. 1130–1161, Nov. 2012.
- C. M. Pieters, J. N. Goswami, R. N. Clark, M. Annadurai, J. Boardman, B. Buratti, J. P. Combe, M. D. Dyar, R. Green, J. W. Head, C. Hibbitts, M. Hicks, P. Isaacson, R. Klima, G. Kramer, S. Kumar, E. Livo, S. Lundeen, E. Malaret, T. McCord, J. Mustard, J. Nettles, N. Petro, C. Runyon, M. Staid, J. Sunshine, L. A. Taylor, S. Tompkins, and P. Varanasi, "Character and Spatial Distribution of OH/H2O on the Surface of the Moon Seen by M3 on Chandrayaan-1," Science, vol. 326, no. 5952, pp. 568–572, Oct. 2009.
- A. RIVKIN, R. BINZEL, and S. BUS, "Constraining near-Earth object albedos using near-infrared spectroscopy," *Icarus*, vol. 175, no. 1, pp. 175–180, May 2005.
- A. E. Saal, E. H. Hauri, M. Lo Cascio, J. A. van Orman, M. J. Rutherford, and R. F. Cooper, "The Apollo 15 Very Low-Ti Glasses, Evidence for the Presence of Indigenous Water in the Moon's Interior," *LPSC*, vol. 39, p. 1711, Mar. 2008.
- J. M. Sunshine, T. L. Farnham, L. M. Feaga, O. Groussin, F. Merlin, R. E. Milliken, and M. F. A'Hearn, "Temporal and Spatial Variability of Lunar Hydration As Observed by the Deep Impact Spacecraft," *Science*, vol. 326, no. 5952, pp. 565–568, Oct. 2009.
- D. Takir and J. P. Emery, "Outer Main Belt asteroids: Identification and distribution of four 3-μm spectral groups," *Icarus*, vol. 219, no. 2, pp. 641–654, Jun. 2012.