The SOFIA Massive (SOMA) Star Formation Survey

Jonathan C. Tan

James M. De Buizer Mengyao Liu Yichen Zhang

Jan E. Staff
Maria T. Beltrán
Kei Tanaka
Barbara Whitney Ralph Shuping

Nicola Da Rio
Viviana Rosero
Maria Drozdovskaya

The Physics of High-Mass Star Formation

A complicated, nonlinear process:

- Gravity vs pressure (thermal, magnetic, turbulence, radiation, cosmic rays) and shear.
- Heating and cooling, generation and decay of turbulence, generation (dynamo) and diffusion of B-fields.
- Chemical evolution of dust and gas.
- Fragmentation
- Stellar structure and evolution
- Feedback
- Wide range of scales (~ 12 dex in space, time) and multidimensional.
- Uncertain/unconstrained initial conditions/boundary conditions.

Notation for gas structures: Core -> star or close binary Clump -> star cluster

(Massive) Star Formation: Open Questions

- Causation: external triggering or spontaneous gravitational instability?
- Initial conditions: how close to equilibrium?
- Accretion mechanism: [turbulent/magnetic/thermal-pressure]-regulated fragmentation to form cores vs competitive accretion / mergers
- Timescale: fast or slow (\# of dynamical times)?
- End result
- Initial mass function (IMF)
-Binary fraction and properties

How do these properties vary with environment? Subgrid model of SF? Threshold $\mathbf{n}_{\mathbf{H}^{*}}$? Efficiency $\varepsilon_{\mathrm{ff}}$?

Massive Star Formation Theories

Core Accretion:

wide range of $\mathrm{dm} * / \mathrm{dt} \sim 10^{-5}-10^{-2} \mathrm{M}_{\odot} \mathrm{yr}^{-1}$
(e.g. Myers \& Fuller 1992; Caselli \& Myers 1995; McLaughlin \& Pudritz 1997; Osorio+ 1999; Nakano+ 2000; Behrend \& Maeder 2001)

Turbulent Core Model:

(McKee \& Tan 2002, 2003)
Stars form from "cores" that fragment from the "clump"

$$
\bar{P}=\phi_{P} G \Sigma^{2}
$$

If in equilibrium, then self-gravity is balanced by internal pressure: B-field, turbulence, radiation pressure (thermal P is small)

Cores form from this turbulent/magnetized medium: at any instant there is a small mass fraction in cores.
These cores collapse quickly to feed a central disk to form individual stars or binaries.

$$
\dot{m}_{*} \sim M_{\text {core }} / t_{\mathrm{ff}}
$$

Massive Star Formation Theories

Core Accretion:

wide range of $\mathrm{dm} * / \mathrm{dt} \sim 10^{-5}-10^{-2} \mathrm{M}_{\odot} \mathrm{yr}^{-1}$
(e.g. Myers \& Fuller 1992; Caselli \& Myers 1995; McLaughlin \& Pudritz 1997; Osorio+ 1999; Nakano+ 2000; Behrend \& Maeder 2001)

Turbulent Core Model:

(McKee \& Tan 2002, 2003)
Stars form from "cores" that fragment from the "clump"

$\bar{P}=\phi_{P} G \Sigma^{2}$
If in equilibrium, then self-gravity is balanced by internal pressure: B-field, turbulence, radiation pressure (thermal P is small)

Cores form from this turbulent/magnetized medium: at any instant there is a small mass fraction in cores. These cores collapse quickly to feed a central disk to form individual stars or binaries.

$$
\dot{m}_{*} \sim M_{\text {core }} / t_{\mathrm{ff}}
$$

Competitive (Clump-fed) Accretion:
(Bonnell, Clarke, Bate, Pringle 2001;
Bonnell, Vine, \& Bate 2004;
Schmeja \& Klessen 2004;
Wang, Li, Abel, Nakamura 2010; ...)
Massive stars gain most mass by BondiHoyle accretion of ambient clump gas
 Originally based on simulations including only thermal pressure.

Massive stars form on the timescale of the star cluster, with relatively low accretion rates.

Violent interactions?

Mergers?
(Bonnell, Bate \& Zinnecker 1998;
Bally \& Zinnecker 2005
Bally et al. 2011)

Massive Star Formation Theories

Core Accretion:

wide range of $\mathrm{dm} * / \mathrm{dt} \sim 10^{-5}-10^{-2} \mathrm{M}_{\odot} \mathrm{yr}^{-1}$
(e.g. Myers \& Fuller 1992; Caselli \& Myers 1995; McLaughlin \& Pudritz 1997; Osorio+ 1999; Nakano+ 2000; Behrend \& Maeder 2001)

Turbulent Core Model:

(McKee \& Tan 2002, 2003)
Stars form from "cores" that fragment from the "clump"

SOFIA measurement of Clump Infall $V_{\text {infall }} \boldsymbol{\sim} 0.1 \mathbf{V f f}^{\text {ff }}$ (Wyrowski et al. 2016)

Limited fragmentation Csengeri et al. 2017

$$
\bar{P}=\phi_{P} G \Sigma^{2}
$$

If in equilibrium, then self-gravity is balanced by

Competitive (Clump-fed) Accretion:
(Bonnell, Clarke, Bate, Pringle 2001;
Bonnell, Vine, \& Bate 2004;
Schmeja \& Klessen 2004;
Wang, Li, Abel, Nakamura 2010; ...)
Massive stars gain most mass by BondiHoyle accretion of ambient clump gas
 Originally based on simulations including only thermal pressure.

Massive stars form on the timescale of the star cluster, with relatively low accretion rates.

Schematic Differences Between Massive Star Formation Theories

Schematic Differences Between Massive Star Formation Theories

massive prestellar core

massive-star-forming core [protostar+gravitationally-bound gas]

Turbulent core model (MT02, 03)

Competitive Bondi-Hoyle accrettion model

Schematic Differences Between Massive Star Formation Theories

massive prestellar core

The Initial Conditions of Massive Star Formation

Do massive starless cores exist? Are they close to virial equilibrium?

$$
\begin{aligned}
R_{\mathrm{c}, \text { vir }} \rightarrow 0.0574\left(\frac{M_{c}}{60 M_{\odot}}\right)^{1 / 2}\left(\frac{\Sigma_{\mathrm{cl}}}{1 \mathrm{~g} \mathrm{~cm}^{-2}}\right)^{-1 / 2} \mathrm{pc} \\
\sigma_{\mathrm{c}, \text { vir }} \rightarrow 1.09\left(\frac{M_{c}}{60 M_{\odot}}\right)^{1 / 4}\left(\frac{\Sigma_{\mathrm{cl}}}{1 \mathrm{~g} \mathrm{~cm}^{-2}}\right)^{1 / 4} \mathrm{~km} \mathrm{~s}^{-1} \\
\hline
\end{aligned}
$$

Mid-IR Extinction Mapping of Infrared Dark Clouds

(Butler \& Tan 2009, 2012; see also Peretto \& Fuller 2009; Ragan et al. 2009; Battersby et al. 2010)
G28.37+00.07

(Churchwell et al. 2009)

Mid-IR Extinction Mapping of Infrared Dark Clouds

(Butler \& Tan 2009, 2012; see also Peretto \& Fuller 2009; Ragan et al. 2009; Battersby et al. 2010)

G28.37+00.07

Spitzer IRAC $8 \mu m$ (GLIMPSE)

Median filter for background around IRDC; interpolate for region behind the IRDC
Correct for foreground
~Arcsecond scale maps of regions up to $\Sigma \sim 0.5 \mathrm{~g} \mathrm{~cm}^{-2}$; independent of dust temp.

Distance from molecular line velocities -> M(Σ)

IRDC Studies

Butler \& Tan (2009; 2012) - MIREX maps

- ${ }^{1}$ Fiducial MT03 core:

$\boldsymbol{\Sigma}$ - M Diagram

Physical Properties of Star-Forming Regions

$$
\Sigma \equiv \frac{M}{\pi R^{2}}
$$

$$
\bar{P} \simeq G \Sigma^{2}
$$

$\bar{P} / k=4.3 \times 10^{8} \Sigma^{2} \mathrm{Kcm}^{-3}$ $t_{f f}=\left(\frac{3 \pi}{32 G \rho}\right)^{1}$

Tan et al. (2014, PPVI)
M (M_{\odot})

SOFIA Capabilities

Comparison to Turbulent Core Model

0.1
0.2
0.3
g.cm-2
0.6
0.7
0.8
0.9

Ci, $\Sigma_{\text {mIRE, }} \mathrm{N}_{2} \mathrm{D}^{+}(3-2)$ contours

$c^{2}=\sigma^{2}+\frac{B^{2}}{8 \pi \rho}+\frac{\delta B^{2}}{24 \pi \rho}$
$\phi_{B} \equiv \frac{\left\langle c^{2}\right\rangle}{\left\langle\sigma^{2}\right\rangle}=1+\frac{3}{2} \frac{E_{B}}{E_{K}}+\frac{E_{\delta B}}{2 E_{K}}=1.3+\frac{3}{2 m_{\mathrm{A}}^{2}}$
$\sigma_{\mathrm{c}, \text { vir }} \rightarrow 1.09\left(\frac{M_{c}}{60 M_{\odot}}\right)^{1 / 4}\left(\frac{\Sigma_{\mathrm{cl}}}{1 \mathrm{~g} \mathrm{~cm}^{-2}}\right)^{1 / 4} \mathrm{~km} \mathrm{~s}^{-1}$
Core masses inside 3σ $\mathrm{N}_{2} \mathrm{D}^{+}$contour:
$\Sigma_{\mathrm{cl}}=0.36 \mathrm{~g} \mathrm{~cm}^{-2}$
$\mathrm{M}_{\mathrm{c}, \text { MIREX }}=55.2 \pm 25 \mathrm{M}_{\odot}$ $\mathrm{M}_{\mathrm{c}, \mathrm{mm}}=62.5{ }^{129}{ }_{26.9} \mathrm{M}_{\odot}$
$0^{\circ} .066$
$0^{\circ} .065$
0

ALMA beam

Predictions from Virial Equilibrium

-1D velocity dispersion if virialized:
($m_{A}=\sqrt{3} \sigma_{c} / v_{A}=1$)

$$
\sigma_{\mathrm{c}, \mathrm{vir}} \rightarrow 1.09\left(\frac{M_{c}}{60 M_{\odot}}\right)^{1 / 4}\left(\frac{\Sigma_{\mathrm{cl}}}{1 \mathrm{~g} \mathrm{~cm}^{-2}}\right)^{1 / 4} \mathrm{~km} \mathrm{~s}^{-1}
$$

Core	C1-N	C1-S	F1	F2	G2-N	G2-S
$\Sigma_{\mathrm{cl}}\left(\mathrm{g} \mathrm{cm}^{-2}\right)$	0.48	0.40	0.22	0.32	0.21	0.19
$\mathrm{M}_{\mathrm{c}}\left(\mathrm{M}_{\odot}\right)$	16	63	6.5	4.7	2.4	0.83
$\sigma_{\text {vir }}(\mathrm{km} / \mathrm{s})$	0.66 ± 0.22	0.88 ± 0.30	0.43 ± 0.15	0.44 ± 0.15	0.33 ± 0.11	0.25 ± 0.09
$\sigma_{\text {obs }}(\mathrm{km} / \mathrm{s})$	0.41 ± 0.03	0.41 ± 0.02	0.25 ± 0.02	0.42 ± 0.04	0.34 ± 0.02	0.30 ± 0.02

$<\sigma_{\mathrm{obs}} / \sigma_{\mathrm{vir}}>=0.81 \pm 0.13$
$\mathrm{m}_{\mathrm{A}, \mathrm{vir}}=0.28->\mathrm{B}_{\mathrm{vir}}=0.9 \mathrm{mG}$
$B_{\text {med }} \simeq 0.12 n_{\mathrm{H}}^{0.65} \mu \mathrm{G}$ (for $n_{\mathrm{H}}>300 \mathrm{~cm}^{-3}$) (Crutcher et al. 2010)
$\mathrm{n}_{\mathrm{H}, \mathrm{c}}=6.4 \times 10^{5} \mathrm{~cm}^{-3}->\mathrm{B}_{\text {med }}=0.7 \mathrm{mG}$
Tentative Conclusion: Cores appear to be near virial equilibrium, after accounting for clump envelope. Possibly slightly sub-virial; or have stronger B-fields (see also - Kauffmann, Pillai \& Goldsmith 2013).

Massive Pre-Stellar Core
 C1-S High Resolution (0.2", 0.005pc @ 5kpc)

Core property (\% error)	C1-S inner	C1-S outer
$\theta_{c}\left(^{\prime \prime}\right)$	1.10	1.85
$d(\mathrm{kpc})(20 \%)$	5.0	5.0
$R_{\mathrm{C}}(0.01 \mathrm{pc})(20 \%)$	2.67	4.48
$M_{\mathrm{c}, \mathrm{mm}}\left(M_{\odot}\right)$	$16.2_{4.25}^{42.8}$	$47.9_{18.6}^{110}$
$n_{\mathrm{H}, \mathrm{c}, \mathrm{mm}}\left(10^{6} \mathrm{~cm}^{-3}\right)$	$5.90_{1.94}^{15.4}$	$3.67_{1.74}^{8.26}$

CO depletion factor: $\mathrm{f}_{\mathrm{D}}>600$
(c) color: $\mathrm{N}_{2} \mathrm{D}^{+}$smooth

DCO ${ }^{+}$Envelope
(a) color: $\mathrm{DCO}^{+}(3-2)$

Kong, Tan et al. (2017b, submitted)

Constraints for Initial Conditions of Numerical Simulations

Peters et al. (2011)
$M=100 M_{\odot}, R=0.5 p c$,
$\mathrm{n}_{\mathrm{H}}=5400 \mathrm{~cm}^{-3}, \mathrm{~B}=10 \mu \mathrm{G}$

Seifried et al. (2012) $\mathrm{M}=100 \mathrm{M}_{\odot}, \mathrm{R}=0.25 \mathrm{pc}$,
$\mathrm{n}_{\mathrm{H}}=4.4 \times 10^{4} \mathrm{~cm}^{-3}, \mathrm{~B} \sim 1 \mathrm{mG}$

Myers et al. (2013)
$M=300 M_{\odot}, R=0.1 \mathrm{pc}$, $\mathrm{n}_{\mathrm{H}}=2.4 \times 10^{6} \mathrm{~cm}^{-3}, \mathrm{~B}>\sim 1 \mathrm{mG}$

Observations:

Evidence for strong magnetic fields in some massive star-forming cores

Girart+ (2009)
see also Q. Zhang+ (2015)
Evidence for nonthermal support

Do massive protostars have morphologies similar to low-mass protostars?
 What sets the star formation efficiency from the core? CMF -> IMF?

Protostellar Evolution

Zhang, Tan, Hosokawa (2014)

see also Palla \& Stahler 1993; Hosokawa et al. (2010)

Protostellar Evolution

Zhang, Tan, Hosokawa (2014)

see also Palla \& Stahler 1993; Hosokawa et al. (2010)

Diagnostics of the Turbulent Core Model

Zhang \& Tan (2011), Zhang, Tan \& McKee (2013), Zhang, Tan \& Hosokawa (2014), Tanaka, Tan \& Zhang (2016)

Prediction: increasing symmetry from MIR-FIR

NIR to FIR morphologies

Rotation and outflow axis inclined at 60° to line of sight.

Massive Protostar G35.2N: d=2.2kpc; L~105 L 。

FORCAST 31 micron

FORCAST 37 micron

0.01

$$
\begin{gathered}
0.10 \\
\mathrm{~S} / \mathrm{S}_{\text {max }}
\end{gathered}
$$

0.0010
0.0100
$\mathrm{~S} / \mathrm{S}_{\text {max }}$

Zhang, Tan, De Buizer et al. (2013)

Spectral energy distribution

MIR SED requires high Σ core/clump

[^0]1000

Flux profiles along outflow cavity axis

$$
\begin{aligned}
& L_{\text {bol }} \sim(0.66-2.2) \times 10^{5} \mathrm{~L}_{\odot} \\
& \mathrm{M}_{\text {core }} \sim 240 \mathrm{M}_{\odot} \\
& \Sigma_{\mathrm{cl}} \sim 0.4-1 \mathrm{~g} / \mathrm{cm}^{2} \\
& \theta_{\mathrm{w}} \sim 35-51^{\circ} \\
& \theta_{\text {view }} \sim 43-58^{\circ} \\
& \mathrm{m}^{*} \sim 20-34 \mathrm{M}_{\odot}
\end{aligned}
$$

Spectral energy distribution
Flux profiles along outflow cavity axis

Initial \& Environmental Conditions

Evolutionary Tracks

Density/velocity

 Profiles
Continuum

Radiative Transfer
(Code: Whitney+ 03, 12; also see Robitaille+ 11)

Temperature Profiles

SEDs

IR Images
$M_{c}=60 M_{\odot}, \Sigma_{\mathrm{c} 1}=\mid \mathrm{g} / \mathrm{cm}^{2}, \beta_{\mathrm{c}}=0.02 \quad M_{\mathrm{c}}=60 M_{\odot}, \Sigma_{\mathrm{c}}=0.3 \mathrm{~g} / \mathrm{cm}^{2}, \beta_{\mathrm{c}}=0.02$

Initial \& Environmental

 ConditionsContinuum
Radiative Transfer
(Code: Whitney+ 03, 12;
also see Robitaille+ 11)
Temperature Profiles

SEDs

$M_{c}=60 M_{\odot}, \Sigma_{\mathrm{cl}}=1 \mathrm{~g} / \mathrm{cm}^{2}, \beta_{\mathrm{c}}=0.02 \quad M_{\mathrm{c}}=60 M_{\odot}, \Sigma_{\mathrm{cl}}=0.3 \mathrm{~g} / \mathrm{cm}^{2}, \beta_{\mathrm{c}}=0.02$

IR Images
Images

$8 \mu \mathrm{~m}$	$20 \mu \mathrm{~m}$	$37 \mu \mathrm{~m}$	$8 \mu \mathrm{~m}$	$20 \mu \mathrm{~m}$	$37 \mu \mathrm{~m}$
8	8				
8					

Continuum
Radiative Transfer
(Code: Whitney+ 03, 12;
also see Robitaille+11)

Temperature Profiles

SEDs
$M_{c}=60 M_{\odot}, \Sigma_{\mathrm{cl}}=1 \mathrm{~g} / \mathrm{cm}^{2}, \beta_{\mathrm{c}}=0.02$
$M_{\mathrm{c}}=60 M_{\odot}, \Sigma_{\mathrm{cl}}=0.3 \mathrm{~g} / \mathrm{cm}^{2}, \beta_{\mathrm{c}}=0.02$

Images

$8 \mu \mathrm{~m}$	$20 \mu \mathrm{~m}$	$37 \mu \mathrm{~m}$	$8 \mu \mathrm{~m}$	$20 \mu \mathrm{~m}$	$37 \mu \mathrm{~m}$
		0			

Initial \& Environmental Conditions

Continuum
Radiative Transfer
(Code: Whitney+ 03, 12;
also see Robitaille+ 11)
Temperature Profiles

SEDs

IR Images

Initial \& Environmental Conditions

Evolutionary Tracks

Density/velocity Profiles

Continuum Radiative Transfer
(Code: Whitney+ 03, 12;
also see Robitaille+ 11)
Temperature Profiles

SEDs
$M_{\mathrm{c}}=60 \mathrm{M}_{\odot}, \Sigma_{\mathrm{cl}}=1 \mathrm{~g} / \mathrm{cm}^{2}, \beta_{\mathrm{c}}=0.02$
$M_{\mathrm{c}}=60 \mathrm{M}_{\odot}, \Sigma_{\mathrm{cl}}=0.3 \mathrm{~g} / \mathrm{cm}^{2}, \beta_{\mathrm{c}}=0.02$

Images

IR Images

$8 \mu \mathrm{~m}$	$20 \mu \mathrm{~m}$	$37 \mu \mathrm{~m}$	$8 \mu \mathrm{~m}$	$20 \mu \mathrm{~m}$	$37 \mu \mathrm{~m}$
			\square		

Initial \& Environmental

 ConditionsEvolutionary Tracks

Continuum
Radiative Transfer
(Code: Whitney+ 03, 12;
also see Robitaille+ 11)
Temperature
Profiles

SEDs
$M_{c}=60 M_{\odot}, \Sigma_{c l}=1 \mathrm{~g} / \mathrm{cm}^{2}, \beta_{\mathrm{c}}=0.02$
$M_{c}=60 M_{\odot}, \Sigma_{\mathrm{cl}}=0.3 \mathrm{~g} / \mathrm{cm}^{2}, \beta_{\mathrm{c}}=0.02$

Model grid

3+3 parameters:
$\Sigma_{\mathrm{cl}}, \mathrm{M}_{\mathrm{c}}, \mathrm{m}_{\text {star }}, \mathrm{d}$, inc., Av_{v}

Determine the evolutionary tracks

Determine how it is viewed

Determine the current stage
$\Sigma_{\mathrm{cl}}: 0.1 \sim 3 \mathrm{~g} / \mathrm{cm}^{2}(4)$
$M_{c}: 10 ~ 500(15)$
$\mathrm{m}_{\text {star: }} 0.5 \sim 160$ (14)
SEDs: $(8640)+(\mathrm{d}, \mathrm{Av})$

The SOFIA Massive (SOMA) Star Formation Survey

Jonathan C. Tan, James M. De Buizer, Mengyao Liu,
Yichen Zhang, Jan E. Staff, Maria T. Beltrán,
Ralph Shuping, Barbara Whitney

THE SOFIA MASSIVE (SOMA) STAR FORMATION SURVEY: I. OVERVIEW AND FIRST RESULTS
James M. De Buizer ${ }^{1}$
, Mengyao Liu ${ }^{2}$, Jonathan C. Tan ${ }^{2,3}$, Yichen Zhang ${ }^{4,5}$, Maria
Jan E. Staff ${ }^{2,7}$, Kei E. I. Tanaka ${ }^{2}$, Barbara Whitney
Jan E. Staff ${ }^{2,7}$, Kei E. I. Tanaka ${ }^{2}$, Barbara Whitney ${ }^{8}$. ${ }^{2}$ eltran ${ }^{6}$, Ralph Shuping ${ }^{1}$ ${ }^{2}$ Department of Astronomy, University of Florida, Gainesville, FL 32611, USA
${ }^{3}$ Department of Physics, University of Florida, Gainesville, FL 32611, USA
${ }^{4}$ Departarmento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile
${ }^{5}$ The Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako-shi, Saitama 351-0198, Japan
${ }^{\text {INAF}}$ INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze, Italy
${ }^{7}$ College of Science and Math, University of Virgin Islands, St. Thomas, United States Virgin Islands 00802 ${ }^{8}$ Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter St, Madison, WI 53706, USA

ABSTRACT

We present an overview and first results of the SOFIA Massive (SOMA) Star Formation Survey, which is using the FORCAST instrument to image massive protostars from $\sim 10-40 \mu \mathrm{~m}$. These wavelengths trace thermal emission from warm dust, which in Core Accretion models mainly emerges from the inner regions of protostellar outflow cavities. Dust in dense core envelopes also imprints characteristic extinction patterns at these wavelengths causing intensity peaks to shift along the outflow axis and profiles to become more symmetric at longer wavelengths. We present observational
results for the first eight protostars in the survey, i.e., multiwavelength images, including some ancillary results for the first eight protostars in the survey, i.e., multiwavelength images, including some ancillary
ground-based MIR observations and archival Spitzer and Herschel tata. These images generally show extended MIR/FIR emission along directions consistent with those of known outflows and with shorter wavelength peak flux positions displaced from the protostar along the blteshifted, near-facing sides, thus confirming qualitative predictions of Core Accretion models. We then compile spectral energy distributions and use these to derive protostellar properties by fitting theoretical radiative transfer models. Zhang \& Tan models, based on the Turbulent Core Model of McKee \& Tan, imply the sources have protostellar masses $m_{*} \sim 10-50 M_{\odot}$ accreting at $\sim 10^{-4} / 10^{-3} M_{\odot}$ yr ${ }^{-1}$ inside cores of initial masses $M_{c} \sim 30-500 M_{\odot}$ embedded in clumps with mass surface densities $\Sigma_{c 1} \sim 0.1-3 \mathrm{~g} \mathrm{~cm}^{-2}$. Fitting
Robitaille et al. models typically leads to slightly higher protostellar masses, but with disk accretion rates $\sim 100 \times$ smaller. We discuss reasons for these differences and overall implications of these first
survey results for massive star formation theories.
Keywords: ISM: jets and outflows - dust - stars: formation - stars: winds, outflows - stars: early-
type - infrared radiation - ISM: individual(AFGL 4029, AFGL 437, IRAS 07299-1651
G35.20-0.74, G45.45+0.05,

The enormous radiative and mechanical luminosities
of massive

The SOMA Suryey

 SOFIA-FORCASTKobservations of asomplevi rou massive \& intermediate-mass proicstars? (Cygles 0, 1, 23, 4).
The SOMA Suryey

 SOFIA-FORCAST observations of a selmpleve ~ou massive \& intermediate-mass po oftars (Cycles 0, 1, 2, 3, 4).Type I: MIR sources in IRDCs - relatively isolated sources in Infrared Dark Clouds, some without detected radio
Type II: Hyper-compact - often jet-like, radio sources, where the MIR emission extends beyond the observed radio emission (e.g., G35.2) Type III: Ultra-compact - radio sources where the radio emission is more extended than the MIR emission
Type IV: Clustered sources - a MIR source exhibiting radio emission is surrounded by several other MIR sources within ~60"

Also extended to Intermediate-Mass protostars.

First 8 Sources

Table 1. SOFIA FORCAST Observations: Obs. Dates \& Exposure Times (s)

Source	R.A.(J2000)	Dec.(J2000)	$\mathrm{d}(\mathrm{kpc})$	Obs. Date	$7.7 \mu \mathrm{~m}$	$11.1 \mu \mathrm{~m}$	$19.7 \mu \mathrm{~m}$	$25.3 \mu \mathrm{~m}$	$31.5 \mu \mathrm{~m}$	37.1 mm
AFGL 4029	$03^{h} 01^{m} 31^{\text {s }} .28$	$+60^{\circ} 29^{\prime} 12^{\prime \prime}{ }^{\prime} 87$	2.0	2014-03-29	112	\ldots	158	..	282	678
AFGL 437	$03^{h} 07^{m} 24^{\text {s }} 55$	$+58^{\circ} 30^{\prime} 52^{\prime \prime}{ }^{\prime \prime} 76$	2.0	2014-06-11	217	\ldots	2075	...	2000	884
IRAS 07299-1651	$07^{h} 32^{m} 09^{s} .74$	$-16^{\circ} 58^{\prime} 11^{\prime \prime}{ }^{\prime} 28$	1.68	2015-02-06	280	...	697	\ldots	449	1197
G35.20-0.74	$18^{h} 58^{m} 13.02$	$+01^{\circ} 40^{\prime} 36^{\prime \prime} 2$	2.2	2011-05-25	\ldots	909	959	...	4068	4801
$\mathrm{G} 45.47+0.05$	$19^{h} 14^{m} 25^{\mathrm{s}} .67$	$+11^{\circ} 09^{\prime} 25^{\prime \prime} 45$	8.4	2013-06-26	\ldots	309	\ldots	588	316	585
IRAS 20126+4104	$20^{h} 14^{m} 26^{\mathrm{s}} .05$	$+41^{\circ} 13^{\prime} 32^{\prime \prime}{ }^{\prime} 48$	1.64	2013-09-13	\ldots	484	\ldots	1276	487	1317
Cepheus A	$22^{h} 56^{m} 17^{\text {s. }} 98$	+62 ${ }^{\circ} 01^{\prime} 49 .{ }^{\prime \prime} 39$	0.7	2014-03-25	242	\ldots	214	\cdots	214	1321
NGC 7538 IRS9	$23^{h} 14^{m} 01^{\text {s }} 77$	$+61^{\circ} 27^{\prime} 19^{\prime \prime}{ }^{\prime} 8$	2.65	2014-06-06	215	\cdots	653	\cdots	491	923

De Buizer, Liu, Tan, Zhang et al. (2017)

IRAS 07299-1651

IRAS 20126+4104

Cepheus A

NGC 7538 IRS9

Source	Zhang \& Tan models										
	χ^{2}	$\begin{gathered} M_{c} \\ \left(M_{\odot}\right) \end{gathered}$	$\begin{gathered} \Sigma_{\mathrm{cl}} \\ \left(\mathrm{~g} \mathrm{~cm}^{-2}\right) \end{gathered}$	$\begin{gathered} R_{c} \\ (\mathrm{pc})\left({ }^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} m_{*} \\ \left(M_{\odot}\right) \end{gathered}$	$\begin{gathered} \theta_{\text {view }} \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} A_{V} \\ (\mathrm{mag}) \end{gathered}$	$\begin{aligned} & M_{\mathrm{env}} \\ & \left(M_{\odot}\right) \end{aligned}$	$\begin{gathered} \theta_{w, \text { esc }} \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} \dot{M}_{\text {disk }} \\ \left(M_{\odot} / \mathrm{yr}\right) \end{gathered}$	$\begin{aligned} & L_{\mathrm{bol}} \\ & \left(L_{\odot}\right) \end{aligned}$
AFGL4029	1.00	100	3.2	0.04 (4)	48	89	64.6	2.6	71	7.1(-4)	4.6(5)
$d=2.2 \mathrm{kpc}$	1.15	30	1.0	0.04 (4)	12	62	0.0	5.7	53	1.9(-4)	4.1(4)
$R_{\text {ap }}=11.2^{\prime \prime}$	1.28	30	3.2	0.02 (2)	16	65	94.9	1.0	56	5.1(-4)	1.0(5)
	1.34	200	0.1	0.33 (31)	48	89	64.6	29	74	5.7(-5)	3.3(5)
	1.44	100	0.1	0.23 (22)	16	89	17.2	53	45	$6.2(-5)$	3.0(4)
AFGL437	0.91	160	0.1	0.29 (30)	16	58	0.0	116	32	8.1(-5)	3.3(4)
$d=2.0 \mathrm{kpc}$	1.48	160	0.1	0.29 (30)	24	86	15.2	87	45	8.5(-5)	7.8(4)
$R_{\text {ap }}=32.0^{\prime \prime}$	1.55	50	3.2	0.03 (3)	8	29	0.0	35	25	6.0(-4)	1.7(4)
	2.02	160	0.1	0.29 (30)	32	89	23.2	55	59	7.6(-5)	1.5(5)
	2.22	200	0.1	0.33 (34)	12	34	0.0	174	20	8.0(-5)	2.0(4)

Source	Zhang \& Tan models										
	χ^{2}	$\begin{gathered} M_{c} \\ \left(M_{\odot}\right) \end{gathered}$	$\begin{gathered} \Sigma_{\mathrm{cl}} \\ \left(\mathrm{~g} \mathrm{~cm}^{-2}\right) \end{gathered}$	$\begin{gathered} R_{c} \\ (\mathrm{pc})\left({ }^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} m_{*} \\ \left(M_{\odot}\right) \end{gathered}$	$\begin{gathered} \theta_{\text {view }} \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} A_{V} \\ (\mathrm{mag}) \end{gathered}$	$\begin{aligned} & M_{\mathrm{env}} \\ & \left(M_{\odot}\right) \end{aligned}$	$\begin{gathered} \theta_{w, \text { esc }} \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} \dot{M}_{\mathrm{disk}} \\ \left(M_{\odot} / \mathrm{yr}\right) \end{gathered}$	$\begin{aligned} & L_{\mathrm{bol}} \\ & \left(L_{\odot}\right) \end{aligned}$
$\begin{aligned} & \text { IRAS07299 } \\ & d=1.4 \mathrm{kpc} \\ & R_{\mathrm{ap}}=7.7^{\prime \prime} \end{aligned}$	0.22	200	0.1	0.33 (48)	8	89	20.2	181	14	$6.8(-5)$	9.5(3)
	0.23	320	0.1	0.42 (61)	8	83	3.0	307	11	7.7(-5)	8.8(3)
	0.32	240	0.1	0.36 (53)	8	86	22.2	226	13	7.1(-5)	1.1(4)
	0.59	60	0.3	0.10 (15)	12	77	9.1	32	40	$1.2(-4)$	2.7(4)
	0.67	160	0.1	0.29 (43)	8	89	33.3	143	17	$6.3(-5)$	1.1(4)
$\begin{gathered} \mathrm{G} 35.20-0.74 \\ d=2.2 \mathrm{kpc} \\ R_{\mathrm{ap}}=32.0^{\prime \prime} \end{gathered}$	2.63	480	0.1	0.51 (48)	16	48	40.4	440	15	$1.2(-4)$	3.8(4)
	2.64	100	3.2	0.04 (4)	12	29	70.7	77	20	9.4(-4)	5.2(4)
	2.76	320	0.1	0.42 (39)	24	68	81.8	256	27	1.2(-4)	8.4(4)
	2.76	80	3.2	0.04 (3)	12	39	15.2	58	22	8.4(-4)	5.0(4)
	2.77	200	0.3	0.19 (17)	12	22	43.4	173	17	1.9(-4)	4.0(4)

Source	χ^{2}	Zhang \& Tan models									
		$\begin{gathered} M_{c} \\ \left(M_{\odot}\right) \end{gathered}$	$\begin{gathered} \Sigma_{\mathrm{cl}} \\ \left(\mathrm{~g} \mathrm{~cm}^{-2}\right) \end{gathered}$	$\begin{gathered} R_{c} \\ (\mathrm{pc})\left({ }^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} m_{*} \\ \left(M_{\odot}\right) \end{gathered}$	$\begin{gathered} \theta_{\text {view }} \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} A_{V} \\ (\mathrm{mag}) \end{gathered}$	$\begin{aligned} & M_{\mathrm{env}} \\ & \left(M_{\odot}\right) \end{aligned}$	$\begin{gathered} \theta_{w, \text { esc }} \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} \dot{M}_{\text {disk }} \\ \left(M_{\odot} / \mathrm{yr}\right) \end{gathered}$	$\begin{aligned} & L_{\mathrm{bol}} \\ & \left(L_{\odot}\right) \end{aligned}$
$\begin{gathered} \mathrm{G} 45.47+0.05 \\ d=8.4 \mathrm{kpc} \\ R_{\mathrm{ap}}=14.4^{\prime \prime} \end{gathered}$	1.21	200	3.2	0.06 (1)	32	86	63.6	140	25	$1.7(-3)$	4.6(5)
	1.34	320	1.0	0.13 (3)	48	89	46.5	200	35	9.3(-4)	5.1(5)
	1.57	320	1.0	0.13 (3)	32	68	15.2	252	24	8.2(-4)	2.7(5)
	1.62	240	1.0	0.11 (3)	32	86	1.0	170	30	7.2(-4)	2.6(5)
	1.75	240	1.0	0.11 (3)	24	55	0.0	192	23	6.6(-4)	1.7(5)
$\begin{gathered} \text { IRAS20126 } \\ d=1.64 \mathrm{kpc} \\ R_{\mathrm{ap}}=12.8^{\prime \prime} \end{gathered}$	1.82	80	0.3	0.12 (15)	16	74	37.4	42	42	1.5(-4)	4.2(4)
	2.07	120	0.3	0.14 (18)	24	74	69.7	57	47	1.8(-4)	9.3(4)
	2.32	80	0.3	0.12 (15)	12	44	73.7	53	31	1.4(-4)	3.4(4)
	2.33	200	0.1	0.33 (41)	12	86	65.7	174	20	8.0(-5)	2.0(4)
	2.39	100	0.3	0.13 (16)	16	51	66.7	61	36	1.6(-4)	4.5(4)

Source	Zhang \& Tan models										
	χ^{2}	$\begin{gathered} M_{c} \\ \left(M_{\odot}\right) \end{gathered}$	$\begin{gathered} \Sigma_{\mathrm{cl}} \\ \left(\mathrm{~g} \mathrm{~cm}^{-2}\right) \end{gathered}$	$\begin{gathered} R_{c} \\ (\mathrm{pc})\left({ }^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} m_{*} \\ \left(M_{\odot}\right) \end{gathered}$	$\begin{gathered} \theta_{\text {view }} \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} A_{V} \\ (\mathrm{mag}) \end{gathered}$	$\begin{aligned} & M_{\mathrm{env}} \\ & \left(M_{\odot}\right) \end{aligned}$	$\begin{gathered} \theta_{w, \text { esc }} \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} \dot{M}_{\text {disk }} \\ \left(M_{\odot} / \mathrm{yr}\right) \end{gathered}$	$\begin{aligned} & L_{\mathrm{bol}} \\ & \left(L_{\odot}\right) \end{aligned}$
$\begin{gathered} \text { CepA } \\ d=0.725 \mathrm{kpc} \\ R_{\mathrm{ap}}=48.0^{\prime \prime} \end{gathered}$	2.17	160	0.3	0.17 (47)	12	29	94.9	135	20	1.8(-4)	3.8(4)
	2.21	160	0.3	0.17 (47)	16	39	98.0	125	26	2.0(-4)	5.0(4)
	2.65	400	0.1	0.47 (132)	16	86	100.0	364	17	1.1(-4)	3.8(4)
	2.71	480	0.1	0.51 (145)	12	83	80.8	460	12	1.1(-4)	2.4(4)
	2.81	160	0.3	0.17 (47)	24	74	100.0	98	37	$2.2(-4)$	9.9(4)
$\begin{gathered} \text { NGC7538 } \\ \text { IRS9 } \\ d=2.65 \mathrm{kpc} \\ R_{\text {ap }}=25.6^{\prime \prime} \end{gathered}$	0.15	400	0.1	0.47 (36)	16	22	23.2	364	17	1.1(-4)	3.8(4)
	0.19	320	0.1	0.42 (32)	16	39	2.0	281	19	1.1(-4)	3.7(4)
	0.35	240	0.1	0.36 (28)	24	39	52.5	171	33	1.1(-4)	8.2(4)
	0.47	480	0.1	0.51 (40)	16	22	17.2	440	15	1.2(-4)	3.8(4)
	0.54	60	3.2	0.03 (2)	12	34	22.2	38	27	7.6(-4)	5.0(4)

SOMA Next Steps

SOMA II. Massive Protostars Across Environments (Liu et al.)

SOMA III. Model Fitting with SEDs \& Image Intensity Profiles (Zhang et al.)

SOMA IV. HST NIR Follow-up
(Da Rio et al.)
SOMA V. ALMA Outflow Follow-up
(Zhang et al.)
SOMA VI. ALMA Core Follow-up
(Liu et al.)

Outflow-Confined HII Regions

Tan \& McKee (2003), Tanaka, Tan \& Zhang (2016)

Feedback During Massive Star Formation

Is there a maximum stellar mass set by by formation processes?

m*
Feedback processes:

1. Protostellar outflows
2. Ionization
3. Stellar winds
4. Radiation pressure
5. Supernovae
 claim most massive star to

But Crowther et al. (2010) form was initially ~300M , consistent with statistical sampling of Salpeter IMF with no maximum cutoff mass.

Staff + (2010); Kuiper+ (2015)
Peters et al. 2010, 2011

Krumholz+ (2009); Rosen+ (2016)
Kuiper et al. (2012); Klassen+ (2016)

Accretion processes: Core/disk fragmentation (Kratter \& Matzner 06; Peters et al. 10) Stellar processes: Nuclear burning instabilities/enhanced mass loss
Currently unclear what sets the shape of the massive star IMF

Feedback

Tanaka, Tan, Zhang (2017)

Feedback

Tanaka, Tan, Zhang (2017)

Conclusions

Massive Star Formation Theories:
Core Accretion; Competitive Accretion; Protostellar Collisions
Theory: "Turbulent Core Model":
normalize core surface pressure to surrounding clump pressure, i.e. selfgravitating weight. Core supported by nonthermal pressure (B-fields/turbulence).
Radiative transfer model grid
(Zhang \& Tan, in prep.)

1: Massive starless/early-stage cores exist in IRDCs (Tan+ 2013; Kong+ 2017b)

2: SOMA Survey of Massive Protostars: (De Buizer+ 2017) High- \& intermediate-mass protostars often have a similar morphology to low-mass protostars, e.g., collimated outflows. Bipoloar outflow cavities shape MIR to FIR morphology and SEDs. SED fitting alone has significant degeneracies. We expect these to be broken by intensity profile fitting \& multiwavelength follow-up.

[^0]: 100

