Far-Infrared N/O Abundance Estimates for Dusty Galaxies

Bo Peng Cornell

Cody Lamarche (University of Toledo) Gordon Stacey Thomas Nikola Christopher Rooney Carl Ferkinhoff (WSU) Amit Vishwas Catie Ball Drew Brisbin (JAO) James Higdon (GSU)

Sarah Higdon (GSU)

Arp 299 credit: NRAO/VLA, HST

Content

- Background
- Far-IR N/O diagnostics
- Photoionisation model grids calibration with Neon lines
- SOFIA FIFI-LS data
- Application on nearby galaxies
- Summary and prospects

Far-Infrared Line Diagnostics: Improving N/O Abundance Estimates for Dusty Galaxies

B. Peng¹, C. Lamarche², G. J. Stacey¹, T. Nikola³, A. Vishwas³, C. Ferkinhoff⁴, C. Rooney¹, C. Ball¹, D. Brisbin⁵,

J. Higdon⁶, and S. J. U. Higdon⁶ ¹ Department of Astronomy, Cornell University, Ithaca, NY 14853, USA; bp392@cornell.edu ² Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA ³ Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14853, USA

⁴ Department of Physics, Winona State University, Winona, MN 55987, USA

⁵ Joint ALMA Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile

⁶ Department of Physics, Georgia Southern University, Statesboro, GA 30460, USA

Received 2020 September 4; revised 2020 December 15; accepted 2020 December 16; published 2021 February 22

Intermediate mass stars

primary + secondary

Age, star formation history

N/O - O/H relation

- N/O O/H relation well established
- No evolution up to z ~ 0.4
- Affected by SFE, SF pattern (continuous or busty), feedback ...

Implicit appearance in

Metallicity diagnostics

[N II]/Hα, [N II] λ 6584/[O II] λ 3727, [N II] λ 6584/[O III] λ 5007, [O III]52+88/[N III], [O III]88/[N II]122, etc.

Photoionisation models

input parameter of abundance

BPT diagram \bullet

[N II]/H α to [O III]/H β

Pereira-Santaella et al. 2017

N/O diagnostics

Optical strong line method \bullet

N2R2 ([N II] λ 6584/H β + [O II] λ 3727/H β)

- Te methods
- **Far-IR strong line** \bullet

[N III] 57 μ m/[O III] 52 μ m. Only on H II regions and PNs.

N2O2 ([N II] λ 6584/[O II] λ 3727), N2S2 ([N II] λ 6584/[S II]),

Far-IR Fine-structure lines

- Insensitive to electron temperature
- Moderate dependence on density
- Little-to-none dust extinction
- Atmosphere absorption, low transmission
- Strong

Clear physical interpretation Difficult to detect Density weighted

Optical forbidden lines

- Exponential dependence on temperature
- Moderate dependence on density
- Require extinction correction
- Good observation condition
- Strong

Difficult to interpret Easy to detect Temperature weighted

Far-IR N/O diagnostics: line ratio

Ionisation fraction

(radiation field strength/hardness)

Energy level distribution

(density, temperature)

[N III] 57 µm/[O III] 52 µm

Transition probability and energy

Ionisation fraction

lon	ΟΙΙ	NII	He II
Ionization energy (eV)	13.62	14.53	24.59

Highly ionised, only exist in H II region

no contamination from DIG and neutral gas

Co-spatial in He Strömgren sphere

 N^{2+}/N $\frac{1}{O^{2+}/O} \sim 1$ in hard radiation field, weakly dependent on hardness dependent on hardness

Energy level distribution

lon	Line wavelength (µm)	Critical density (cm^-3)
N III	57.32	2.1E+03
O III	51.81	3.6E+03
	88.36	510
		$\epsilon_{\rm [N \ III]}$

 $\epsilon_{\rm [O III]52}$

Other benefits

- proximity in wavelength
- [O III]52 bright

Close in critical density - - - -

function of electron density, change by 5 from low to high density limit, can be corrected

• [O III]52/88 probing n_e in the same region

N3O3 parameter

$$N/O \sim N3O3 = \frac{F_{\rm [N]}}{F_{\rm [O]}}$$

With density correction

 $N/O \sim N3O3_{n_e} = N3O$

= N3O

$$D3 \times \frac{1 + 0.691n_e/T_e^{1/2} + 0.0966n_e^2/T_e}{1 + 0.377n_e/T_e^{1/2} + 0.0205n_e^2/T_e}$$
$$3 \times 6.82 \frac{R_{52/88} \left(R_{52/88} + 1.01\right)}{2.13 + 6.26R_{52/88} + R_{52/88}^2}$$

Replace density factor by [O III]52/88 line ratio

11

3MDB: A virtual observatory for photoionized nebulae

- Data repository of photoionisation grids lacksquare
- Cloudy
- Stellar population synthesis
- Independent N/O input \bullet
- Match in parameter space $n_{e} = 100 \text{ cm}^{-3}$ BOND • $\log U = -4$ to -1.5, $\Delta \log U = 0.5$ Vale Asari et al. 2016 • Age = 1, 3, 4, 6 Myr • $\log O/H = -3.2$, to -4.0, $\Delta \log O/H = 0.2$ • **CALIFA** $n_e = 10 \text{ cm}^{-3}$ $\log N/H = -1.25$ to -0.25, $\Delta \log N/H = 0.25$

Cid Fernandes et al. 2014

(Morisset et al. 2015)

480 + 480

= 960 models

Radiation hardness indicator

- [N III]/[N II]
- [Ne III]15.6/[Ne II]12.8 can probe very hard radiation field; strongly correlated with N++/O++ ionisation fraction

lon	NII	Ne II	He I
Ionisation energy (eV)	14.53	21.56	24.59

Calibration

9 regions in 8 local galaxies

- 4 LIRGs
- 1 SF galaxy nucleus
- 3 dwarf galaxies

For NGC 4214 only region I is used

Herschel/PACS (Cormier et al. 2015)

limited by data available

Galaxy name	Type	Pedshift
	Туре	Keusiint
Arp 299	Interacting LIRG	0.010300
Haro 3	BCD	0.003149
II Zw 40	BCD	0.002632
M 83	Spiral	0.001711
MCG+12-02-001	LIRG	0.015698
NGC 2146	LIRG	0.002979
NGC 4194	LIRG	0.008342
NGC 4214	BCD	0.000970
2 compon	ents: Arp 299	814 nm
		C'
Arp 299A a	and	
Arp 299B8	A A	C
		B
		N
HST/WFPC2 (Neff et	al. 2004) <u>10"</u>	

Need for SOFIA

- [O III]52 outside of Herschel/PACS
- [N III] very dim
- Sparse simultaneous detection for [N III] and [O III]52

SOFIA/FIFI-LS

- IFU similar to PACS
- 50 100 µm (blue)

Application: SOFIA/FIFI-LS [O III]52

Arp 299 A [O III]52 - 100 58°34'00" 33'55" ity [Jy] 20 50" DEC 45" ly km/s 40' 35" -50

32^s

RA

30^s

150

100

40

Haro 3 [O III]52

34^s

30"

11^h28^m36^s

M 83 nuclei [O III]52

Application: SOFIA/FIFI-LS [O III]52 and [N III]

Application: ancillary data

Galaxy name	[N III]	[O III]52	[O III]88	[Ne II]12	[Ne III]15
Arp 299 A	7.3 ± 0.5^{a}	40.0 ± 4.28	$28\pm0.32^{\rm a}$	$23.7\pm0.26^{\texttt{b}}$	$5.70\pm0.098^{\rm b}$
Arp 299 B&C	$7.2\pm0.13^{\mathrm{a}}$	30.8 ± 3.72	$30\pm0.26^{\mathrm{a}}$	10.4 ± 0.27^{b}	$5.44\pm0.098^{\texttt{b}}$
Haro 3	$1.23\pm0.17^{\circ}$	26.9 ± 2.99	$18.4\pm0.4^{ extsf{c}}$	$3.52\pm0.13^{\circ}$	$9.84\pm0.74^{\circ}$
II-Zw 40	5.51 ± 4	48.6 ± 4.52	$35.9 \pm 0.4^{\circ}$	$0.735 \pm 0.079^{\circ}$	$14.1 \pm 0.9^{\circ}$
M83 nucleus	16.6 ± 1.03^{d}	22.7 ± 3.03	$21.7\pm0.70^{\rm d}$	50.3 ± 1.98^{d}	$2.93\pm0.077^{\rm d}$
MCG+12-02-001	5.29 ± 1.53	30.5 ± 3.09	23.4 ± 2.4^{e}	$20.1\pm0.21^{\texttt{b}}$	$3.7\pm0.067^{ t b}$
NGC 2146	55.1 ± 5.9^{e}	$151.4\pm20.1^{ extsf{e}}$	157.7 ± 6.5^{e}	$68.2\pm0.80^{\rm b}$	$9.81\pm0.123^{\texttt{b}}$
NGC 4194	6.5 ± 2.2^{e}	31.5 ± 2.8	20.6 ± 1.4^{e}	17.57 ± 0.14^{b}	$5.62\pm0.06^{\rm b}$
NGC 4214 region I	1.96 ± 0.70	17.5 ± 1.31	$31.9\pm0.62^{\rm f}$	$8.98\pm0.22^{\rm f}$	$18.7\pm0.14^{ m f}$

SOFIA/FIFI-LS

ISO

Herschel/PACS: all the rest of far-IR data

Spitzer/IRS: all mid-IR data

Electron density cluster around 200 to 400 cm^-3 except NGC 4214

Application: results

Galaxy Name	Strong Line Method		Model Calibration		log [Ne III]/[Ne II]
(1)	log N3O3 (2)	$\frac{\log N3O3_{n_e}}{(3)}$	log N/O by N3O3 (4)	$\log N/O by N3O3_{n_e}$ (5)	(6)
Arp 299 A	$-1.14\substack{+0.052\\-0.059}$	$-0.88\substack{+0.082\\-0.101}$	$-1.24\substack{+0.119\-0.164}$	$-1.04\substack{+0.122\\-0.171}$	-0.62
Arp 299 B&C	$-1.03\substack{+0.050\\-0.057}$	$-0.86\substack{+0.083\\-0.103}$	$-1.08\substack{+0.102\\-0.133}$	$-0.97\substack{+0.109\\-0.145}$	-0.28
Haro 3	$-1.74\substack{+0.071\\-0.085}$	$-1.48\substack{+0.096\\-0.124}$	$-1.71\substack{+0.089\\-0.113}$	$-1.53\substack{+0.101\\-0.133}$	0.45
II Zw 40	$-1.34\substack{+0.239\\-0.572}$	$-1.10\substack{+0.242\\-0.594}$	$-1.23\substack{+0.242\\-0.595}$	$-1.08\substack{+0.243\\-0.602}$	1.28
M83 nucleus	$-0.53\substack{+0.060\\-0.069}$	$-0.36\substack{+0.096\\-0.123}$	$-0.75\substack{+0.118\\-0.163}$	$-0.63\substack{+0.134\\-0.195}$	-1.23
MCG+12-02-001	$-1.16\substack{+0.116\\-0.159}$	$-0.92\substack{+0.138\\-0.204}$	$-1.29\substack{+0.152\\-0.237}$	$-1.12\substack{+0.163\\-0.264}$	-0.73
NGC 2146	$-0.84\substack{+0.068\\-0.081}$	$-0.68\substack{+0.100\\-0.131}$	$-0.99\substack{+0.126\\-0.177}$	$-0.90\substack{+0.137\\-0.201}$	-0.84
NGC 4194	$-1.08\substack{+0.130\\-0.187}$	$-0.81\substack{+0.143\\-0.215}$	$-1.16\substack{+0.162\\-0.261}$	$-0.95\substack{+0.164\\-0.267}$	-0.49
NGC 4214 region I	$-1.35\substack{+0.135\\-0.197}$	$-1.35\substack{+0.139\\-0.206}$	$-1.34\substack{+0.145\\-0.219}$	$-1.41\substack{+0.143\\-0.215}$	0.32

In the case of no Neon line

- LIRG: N3O3
- Dwarf: N3O3_{ne}

Application: comparison

Galaxy	Optical log N/O	Far-IR log N/O
Arp 299 A	$-0.85^{+0.026a}_{-0.028}$	$-1.04\substack{+0.122\\-0.171}$
Arp 299 B&C	$-0.71^{+0.026a}_{-0.028}$	$-0.97\substack{+0.109\\-0.145}$
Haro 3	$-1.13^{+0.031a}_{-0.033}$, $-1.06^{+0.088b}_{-0.107}$,	$-1.53\substack{+0.101\\-0.133}$
II Zw 40	$-1.29^{\circ}, -1.35^{\circ}, -1.35^{\circ}, -1.30^{+0.029a}_{-0.031}, -1.44^{\circ}, -1.44^{\circ}, -1.44^{\circ}, -1.052^{+0.059e}_{-0.077}$	$-1.08\substack{+0.243\\-0.602}$
M83	$-0.63^{+0.028b}_{-0.042}$	$-0.63\substack{+0.134\\-0.195}$
NGC 2146	$-0.77^{+0.029a}_{-0.031}$, $-1.06^{+0.049b}_{-0.059}$	$-0.90\substack{+0.137\\-0.201}$
NGC 4194	$-0.59^{+0.026a}_{-0.028}$, -0.5°	$-0.95\substack{+0.164\\-0.267}$
NGC 4214 region I	$-1.30^{+0.029a}_{-0.031}$, $-1.28^{+0.017b}_{-0.018}$, $-1.30^{d,e}$,	$-1.41\substack{+0.143 \\ -0.215}$

N/O in literature + N2S2 calculation + N2S2 & PG16 photoionisation grid calibration

N/O in literature

- De Vis et al. 2019 (4/8 sources, PG16)
- Shi et al. 2005; Cormier et al. 2009; Kobulnicky & Skillman 1996

PG16: -0.657 - 0.201 log N2 + $(0.742 - 0.075 \log N2) * \log(N2/R2)$

New optical N/O calculation

N2S2: [N II]λ6584/[S II]λ6717+6731

- N2S2 is insensitive to extinction \bullet
- Moustakas & Kennicutt (2006) integrated spectroscopy covers the whole galaxy

Model calibration

N2S2 vs N3O3 ullet

calculation

• PG16 vs N3O3

Far-IR to Optical comparison

- FIR and optical N/O follow similar trend
- Large scatter in the reference optical N/O
- N2S2 photoionization grid calibration agrees with N3O3 (blue dashed line); PG16 overestimate at low N/O end, and underestimate at N/O > -0.9
- Large error from FIR data, especially [N III]
- Optical N/O ~ FIR N/O + 0.2 dex

Far-IR to Optical N/O discrepancy

- Extinction? X
 - Not for N2S2 calculation
- Optical and Far-IR data mis-match in beam size? X Not for N2S2 calculation
- ISO beam size larger than SOFIA and Herschel? X
- DIG contamination in optical method? Probably. DIG can contribute to low ionized lines (e.g. [N II] λ 6584)

Probably. Far-IR is density weighted, and highly ionized lines are mainly emitted in hard radiation environment. N3O3 is biased to ISM around massive, dense, young stars.

Effect <30%, not for NGC 2146, and would overestimate N/O for NGC 4194

Far-IR and optical lines probe H II regions of different physical condition?

- [N III]/[O III]52 physically robust probe for N/O
- **Density correction**
- Radiation hardness calibration with [Ne III]15/[Ne II]12
- **Demonstrate on local LIRGs and dwarf galaxies**
- FIR optical trend agrees, see 0.2 dex discrepancy
- Limited by sample size and noisy [N III] observation
- **Prospective application:**
 - more SOFIA/FIFI-LS data
 - on high redshift galaxies (dwarf like, some with [O III]88)

