Observing Cool Dust Around Active Galactic Nuclei Using the SOFIA Telescope

Dr. Lindsay Fuller University of Texas at San Antonio

> SOFIA Tele-Talk April 18, 2018

Overview

- AGN Background
 - o Mid-infrared emission source in AGN
- Two main projects:
 - Cycle 2 Observations
 - Modeling using Bayesian inference tool
 - How do SOFIA observations improve the model?
 - Cycle 4 Observations
 - Observational results
 - Resolving 100 pc scale MIR emission

Introduction to Active Galaxies

Credits: NASA/SOFIA/Lynette Cook. Press Release, Fuller et al. 2016

- Active galaxy nucleus is more luminous than the galaxy itself
 - o Most consistently luminous sources of radiation in the universe
- Mechanism that drives the high energies is accretion onto supermassive black hole, causes friction and radiation

3

Spectral Features

- Rotation from accretion process causes velocity dispersion/Doppler broadening of emission lines
- Broad permitted and forbidden emission lines
 - Hallmark of AGN identification
 - o FWHM $\sim 10^3 10^4 \text{ km/s}$
- Narrow forbidden emission lines
 - \circ FWHM < 10^3 km/s

Plot from Landt et al. (2014) shows a broadened Pa α line

Classification

Radio Quiet

- Relatively weak radio emission
- Primarily spiral galaxy hosts
- Seyfert galaxies
 - Moderate Luminosity: 42 < log L_{bol} < 44 erg/s
 - Type 1: Broad and narrow emission lines
 - Type 2: Narrow lines only

Radio Loud

- Generally have prominent radio jet
- Primarily elliptical host
- o Can also be Type 1 or 2
- Only about 10 % of AGN

Cygnus A. Image credit: NRAO/AUI; R. Perley, C. Carilli, J. Dreher

Unified Model

- Requires
 obscuration by
 optically and
 geometrically
 thick dust torus
- Type 1 and 2 are essentially the same, seen in different orientations

Adapted from Beckmann and Schrader (2012), Page 132, Figure 4.16

AGN components

- Supermassive Black Hole
- Accretion disk
- Broad line region
- Narrow line region
- Dust torus absorbs optical/UV radiation, emits in IR
- Radio jets (possibly)

Adapted from Urry & Padovani, 1995

The AGN Torus

- Originally modeled as homogeneous, which saw observational inconsistencies
 - Homogeneous models predict large radii (~100 pc)
 - High resolution (subarcsecond) observations on 8m telescopes ruled out large radii, upper limit ~ 10 pc
- Successful models used "clumpiness" to explain observational inconsistencies
 - o Size
 - o 10 µm feature
- If the dust is distributed in clouds, dust of differing temperatures can exist at similar radii

Model described by six parameters

Nenkova et al. (2008b)

Model formalism of Nenkova et al. (2008)

- σ: Torus angular width
- $Y = R_o/R_i$: Torus outer to inner ratio
- N_0 : Number of clouds in LOS
- r-q: radial distribution power law
- τ_{\vee} : optical depth
- i: torus inclination angle

Torus SED

- Spectral energy distributions have been computed using subarcsecond-resolution, ground based telescopes between 1 – 20 µm
 - o Ex: Ramos-Almeida et al. 2009, 2011; Alonso-Herrero et al. 2011
- Lack of high-resolution observations at wavelengths
 20 µm leaves the SED largely unconstrained
- SOFIA provides a solution to SED coverage at wavelengths > 20 μm

Ichikawa et al. (2015): When available, 30 µm Spitzer data used as an upper limit, no wavelength coverage beyond 30 µm

Cycle 2 Observations

- Eleven Objects observed during SOFIA's 2nd observing cycle (in 2014)
- Well-known, bright, nearby Seyferts that are well-sampled between 1 18 µm with subarcsecond resolution.
- Bolometric luminosities 42 ≤ log L_{bol} ≤ 45 erg/s
- Redshifts < 0.03
 - o <120 Mpc
- SOFIA provides a solution to SED coverage at wavelengths > 20 μ m....but resolution is 3 4" (hundreds of parsecs), where the dust torus is 1 10 pc scale

Cycle 2 Images

31.5 μ m images, Fuller et al. (2016) Contours start at 3σ with 5σ steps

Extracting Torus Emission: PSF Scaling

- The PSF represents unresolved torus emission
- Scaled to 100% of the peak of AGN emission
- The PSF is scaled until the residual shows a smooth profile

Top: AGN image and AGN with PSF overlaid. Middle: Residual after 100% PSF scaling and subtraction. Bottom: Residual after 55% PSF scaling and subtraction.

Spectral Decomposition

- DeblendIRS (Hernan-Caballero et al. 2015)
- IDL routine that separates Spitzer spectra into AGN and stellar components

Clumpy Torus Modeling

- Bayesian inference tool BayesClumpy
 - o (Asensio Ramos & Ramos Almeida, 2009)
- Input: photometry and spectroscopy data, distance, Sy1 or Sy2
- Output: Most probable SED, probability distributions representing the most likely parameter outputs
- Asensio Ramos & Ramos-Almeida 2014: SOFIA provides largest constraining power for Clumpy models
 - o We put this to the test!

BayesClumpy Output SEDs

Green: BayesClumpy output before adding SOFIA data Blue: BayesClumpy output after adding SOFIA data

BayesClumpy Posterior Outputs

Green: BayesClumpy output before adding SOFIA data Blue: BayesClumpy output after adding SOFIA data

BayesClumpy Posterior Outputs

Green: BayesClumpy output before adding SOFIA data Blue: BayesClumpy output after adding SOFIA data

Global Posterior Distributions

Only AGN with NIR data and spectroscopic data were used Green: Global posterior distribution before incorporating SOFIA data Blue: Global posterior distribution after incorporating SOFIA data

Assessment of Cycle 2 Observations

- The wavelength of peak emission does not occur <31.5 µm
 - o supported by Audibert et al., 2017
- The radial extent predicted by the clumpy model is either underestimated or overestimated for 10 of 11 objects.
 - Six objects show an overestimation
 - Four show an underestimation.
 - The average global posterior of Y decreases from 20 to 17, showing that the model generally overestimates torus size without 30 µm data
- We want to know where the spectral turnover occurs
 - o Next project: 37.1 µm SOFIA observations

Cycle 4 Observations

- Three AGN observed at 31.5 and 37.1 µm
- Four observed at only 37.1 µm
- Spectral atlas of Alonso-Herrero et al. 2016
 - Observations carried out under guaranteed time on the Gran Telescopio de Canarias using CanariCam granted to Los Piratas
- Z < 0.02 (D < 75 Mpc)
- $43 \le \log L_{bol} \le 46 \text{ erg/s}$

Cycle 4 Images

31.5 and 37.1 µm images Lowest contour is 3σ , increase in steps of 5σ

37.1 µm Residual Emission

AGN torus is on the order of \sim 10 pc, SOFIA resolution is 0.1 – 1 kpc, so knowing emission components and scales is crucial

Individual MIR Contributors

Using Spitzer/IRS arcsecond scale spectra:

- o Fritz et al. 2006:
 - AGN anything heated by AGN (primarily torus?)
 - Starburst major contributor to emission at λ > 50 μ m
- o Mullaney et al. 2011:
 - AGN could be several dust sources
 - "Host Galaxy" (or anything non-AGN heated...probably stellar)
- o Mor et al. 2009, 2012:
 - Hot AGN component
 - Torus
 - Starburst
 - Cool NLR component

PAH Features

Star Formation

- Polycyclic Aromatic Hydrocarbons (PAHs)
- Present in spectra of HII regions and starburst galaxies
 - Effective tracer of star formation
- $_{\odot}~3.3,\,6.2,\,7.7,\,8.6,\,11.2,\,12.7,\,17\,\mu m$ (There is a [Ne II] 12.8 line as well as H $_{2}$ at 17.1 μm)

Starburst spectra from Brandl et al., 2006

NLR MIR Spectral Features

- NLR model SED of Groves et al. 2006
- Narrow Line Region Emission Lines
 - o lonization potentials are too high to be caused by stellar heating
 - o [O IV] 25.9 μm (~55 eV)
 - [Ne V] 14.3, 24.3 μm (~97 eV)
- To determine emission source, we looked at Spitzer spectra and also compared extended emission to optical and radio axes

Mrk 3

- Optical [OIII] (Capetti et al. 1995) and radio (Kukula et al. 1993) axes are coincident with 37 µm residual
 - o Radio axis shown in green at 500 pc scale
- Radio axis at PA 84 in close alignment to NLR at PA 80
- No PAH, prominent [OIV] and [NeV]
- Residual emission consistent with NLR

- No clear connection to radio axis (Asmus et al. 2016), optical emission is point-like. Radio axis in green at 500 pc scale
- Almost featureless spectrum
- Silicate in emission
- No clear determination of residual source

- Residual not consistent with radio axis (Nagar et al. 1999)
- Optical contours (Ferruit et al. 2000) consistent with star forming regions
- Significant PAH features, little to no NLR features
- Residuals attributed to dust from star formation

- Unable to perform the PSF-scaling, residual unavailable
- Optical contours (Ferruit et al. 2000) show AGN-like emission 1" north of the nucleus
- No PAH with strong [OIV] emission
- If there were residual emission, I would attribute to NLR

- Optical emission (Malkan et al. 1998) fits well within residual emission. Not coincident with radio axis.
- Significant PAH with (relatively) weak [OIV]
- Residuals attributed to star formation with NLR contribtuion

- Residual emission is somewhat coincident with optical (Kaiser et al. 2000) and radio (Pedlar et al. 1998) axes.
- Spectrum shows no PAH, strong [OIV] and weak [NeV]
- Residual emission is consistent with NLR

- Residual emission consistent with optical (Falcke 1998) and radio axes, with some extinction due to host galaxy
- Spectrum shows some weak PAH, strong [OIV]
- Residual emission attributed primarily to NLR with some SF

•33

A Dusty NLR

- Implication is a dusty NLR on 3 4" scales
- Subarcsecond scale polar MIR emission
 - o (Honig et al., 2012, 2013; Tristram et al., 2014; Lopez-Gonzaga et al. 2016)
- Extended polar dust emission out to hundreds of parsecs
 - o 18 Seyferts (of 149)
 - o (Asmus et al. 2016)
- Other models and observations indicate that dust may exist on scales of hundreds of parsecs
 - (Groves et al. 2004, 2006; Schweitzer et al. 2008; Mor et al. 2009, 2012;
 Richardson et al., 2014)
- NLR contribution and SED unknown so we use upper limits on our fluxes (could not do decomposition again)

BayesClumpy SEDs

- Even when the 31.5 and 37.1 μm data is set as an upper limit, the model overestimates 30 – 40 μm flux in NGC 3227 and NGC 4388
- Three AGN show tentative turnover between 30 40 μm

Blackbody Temperatures

- 31.5 and 37.1 µm residual fluxes increase
 - o 2 color fit to blackbody
 - (Yes, two data points aren't ideal)
- $T \sim 70 80 \text{ K dust for Mrk 3 and NGC 4388}$
 - Consistent with NLR models
 - o Temperatures consistent with dust heated at radii of hundreds of parsecs
- T ~ 50 60 K in NGC 2273 and NGC 3227
 - Consistent with star formation temperatures
- Is FIR emission in AGN-dominated objects consistent with observations?

FIR Emission

- 70 and 100 µm Herschel fluxes within 13" from Mullaney et al., 2011 used as upper limits
- The data in pink (Garcia-Gonzalez et al. 2016) is the AGN contribution at 1 kpc
- Left: BayesClumpy SED (black) with starburst template (orange) SB3 from Mullaney et al. 2011, and total emission (green)
- Right: BayesClumpy SED (black) with 75 K blackbody (red) and total emission (purple)
- The 75 K blackbody better represents total emission

Assessment of Cycle 4 Observations

- Tentative observational SED turnover in 3 AGN
- Resolved extended emission in the NLR is tentatively detected in Mrk 3, NGC 4388, and NGC 4151.
- NLR dust possibly emits ~ 70 80 K
- A 75 K blackbody describes FIR emission in NGC 4151 better than a starburst.
 - FIR SED can likely be described as a combination of both sources, further knowledge on the NLR SED is needed

General Conclusions

- Without 31.5 µm data, the model tends to overestimate torus SED (and radial size)
- AGN tentatively show emission turnover between 30
 40 µm
- Outer torus radii ~ 1 8 pc
- Extended residual emission coincident with NLR for 2 (possibly 3) AGN
 - Must take polar/NLR dust when modeling AGN at the resolution of SOFIA

More SOFIA observations of AGN

- Lopez-Rodriguez et al. (2018) show observations of NGC 1068 using FORCAST and HAWC+
 - The torus SED covers wavelengths 1 432 μm!!
- Cycle 6 Observing Proposal approved for observations 37 90 µm

Thank you!