HAWC+ Observations of OMC-1

David T. Chuss Villanova University for the HAWC+ Science Team

SOFIA Tele-Talk, May 8, 2019

HAWC+ Science Team

- David Chuss
- B-G Andersson
- John Bally
- Jessie Dotson
- Darren Dowell
- Jordan A. Guerra
- Al Harper
- Martin Houde
- Terry Jones
- Alex Lazarian
- Enrique Lopez Rodriguez
- Joe Michail
- Mark Morris
- Giles Novak
- Javad Siah
- Johannes Staguhn

- John Vaillancourt
- Carrie Volpert
- Mike Werner
- Ed Wollack
- Dominic Benford
- Marc Berthoud
- Erin Cox
- Dick Crutcher
- Danny Dale
- Laura Fissel
- Paul Goldsmith
- **Ryan Hamilton**
- Shaul Hanany
- Thomas Henning
- Leslie Looney
- Harvey Moseley

- Fabio Santos
- Ian Stephens
- Kostantinos Tassis
- Christopher Trinh
- Eric Van Camp
- Derek Ward-Thompson

Star formation is an essential ingredient in our Origin Story

Talk Outline

- Introduction
 - Star formation
 - Dust polarization
 - SOFIA/HAWC+
- OMC-1 HAWC+ data
 - SEDs
 - Polarization data and general features
 - Polarimetry data cuts
 - Local Dispersion- grain alignment
 - Magnetic field strength- DCF technique
 - Implications for BN/KL Explosion
- Summary

Star Formation Rate

0.68-1.45 Solar Masses/Year (Robitaille et al. 2010- cataloging properties of YSO's)

This is extremely inefficient

(by a factor of up to 100; based on free-fall models alone)

Possibilities:

- Turbulence
- Feedback
- Magnetic Support

Background- Molecular Clouds

- Dust is coexistent with molecular phase in molecular clouds
- Dust Reprocesses optical starlight to IR (absorbs optical light, emits in the (F)IR)
- Magnetic fields are generally "frozen into" the material in molecular clouds.
- Polarized thermal emission from dust can be used to trace the magnetic field structure.

Grain Alignment

- Anisotropic radiation fields (ISRF) impart suprathermal rotation to grains (a>0.1 micron). This implies biattenuance to circular polarization (chiral grains).
- The grains become magnetized due to the Barnett effect (Some of the external angular momentum gets swapped for spin angular momentum of unpaired electrons).
- The magnetized grains precess around the Interstellar magnetic field.
- The grains preferentially spin about the axis of the greatest moment of inertia. (internal dissipative forces)
- Paramagnetic dissipation aligns the spin axis with the magnetic field.
- UPSHOT: Polarized thermal emission from interstellar dust grains is perpendicular to the magnetic field as projected onto the plane of the sky.

RAT; Dolginov & Mytrophanov 1976; Draine & Weingartner 1997; Lazarian & Hoang 2007

Why the Far-Infrared?

Tracing magnetic fields over a range of conditions in the ISM

HAWC+ (Highresolution Airborne Wideband Camera+)

HAWC+ Specifications (Harper+ 2018)

Stars form in Molecular Clouds: Ammonia as a tracer of dense gas

OMC-1

 Closest Sight of Massive star formation (~390 pc; Kounkel+ 2017)

12

WISE/GBT- R. Friesen, Dunlap Institute/J.Pineda, MPIP/GBO/AUI/NSF/NASA

Spectral Energy Distribution (SED) Determination

Free-free

Dust

$$I_{\rm ff} = C \left(\frac{\nu}{30 \,\,\mathrm{GHz}}\right)^{-0.12}$$

Hensley+ (2015)

$$I_{\nu} = (1 - e^{-\tau(\nu)})B_{\nu}(T)$$
$$\tau(\nu) \equiv \varepsilon(\nu/\nu_0)^{\beta}$$

$$\varepsilon = \kappa_{\nu_0} \mu m_{\rm H} N({\rm H}_2)$$

 $\kappa_{\nu_0}(1000 \text{ GHz}) = 0.1 \text{ cm}^2 \text{ g}^{-1}$

$$\mu = 2.8$$

Data Sets- Table 2 (Chuss+2019)

Observatory/ Instrument	Wavelength	Beam Size FWHM	Color Correction	Color Correction Uncertainty	Calibration Uncertainty	Paper Reference	
()	(µm)	(")	(…)	()	(%)	(…)	
SOFIA/HAWC+	53	5.1		999	15	This paper	
SOFIA/HAWC+	89	7.9		100	15	This paper	
SOFIA/HAWC+	154	14.0			15	This paper	
SOFIA/HAWC+	214	18.7			20	This paper	
Herschel/PACS	70	5.6	1.025	0.004	20	Abergel (2010)	
Herschel/PACS	100	6.8	1.004	0.018	20	André (2007)	
Herschel/PACS	160	11.3	0.929	0.027	20	André (2007)	
Herschel/SPIRE	250	18.2	0.970	0.005	10	André (2011), Bendo et al. (2013)	
JCMT/SCUBA-2	850	14.2		100	15	Mairs et al. (2016)	
GBT/MUSTANG	3500	9.0			15	Dicker et al. (2009)	
GBT and VLA	35000	8.4			15	Dicker et al. (2009)	

Adopted Photometry Calibration Values

T-beta correlation

Dupac+ (2002,2003)- have seen this effect Shetty+ (2009)- Suggest either line-of-sight variations or covariance due to noise in the fit

Is the T-beta correlation a systematic or physical ?

LIC & Intensity

Polarized Intensity

Thanks to Leslie Proudfit for putting this image together NASA/SOFIA/D. Chuss+ VLT: ESO/M. 1

@MaeSocials Feb 21 In response to NASA tweet 23

Polarimetry Data Cuts

- Region Masks
- Accept only vectors with S/N>3
- Reference beam contamination

Regional Mask Definitions

Reference Beam Contamination

Novak+ (1997) provide a technique for estimating the maximum possible systematic error from reference beam intensity (assume reference beam is 10% contaminated)

$$w \equiv \overline{I}_r / I_m$$
 $p_{sys}^+ = \max\left[p_m, \left(\frac{p_m + p_r w}{1 + w}\right)\right],$

$$p_{\rm sys}^- = \frac{p_m - p_r w}{1 + w},$$

$$\Delta \phi_{\text{sys}} = \frac{1}{2} \arctan\left[\frac{p_r w}{(p_m^2 - p_r^2 w^2)^{1/2}}\right]$$

Reference Beam Contamination

Systematic/Statistical Cuts

Example data cut masks: reference beam contamination contributes 10 deg or less of possible vector rotation (cut used for DCF)

Fractional Polarization v. Intensity

Possible causes for weak p, I anticorrelation

- Grain alignment is weaker in denser reasons (shielding of grains to ISRF)
- There is magnetic field structure on scales smaller than the beam
- Superposition of fields along the line of sight
- The magnetic field is oriented predominantly along the line of sight

Do the grains remain aligned in dense regions?

$$S = \sqrt{\langle (\phi - \overline{\phi})^2 \rangle} \approx \sqrt{\langle \sin^2(\phi - \overline{\phi}) \rangle}$$
$$= \sqrt{(1 - \langle \hat{q} \rangle \hat{q}(\overline{\phi}) - \langle \hat{u} \rangle \hat{u}(\overline{\phi}))/2},$$

 $p \approx p_0 (I/\overline{I})^{\alpha_I} (S/\overline{S})^{\alpha_S}$

Wavelength	θ_S	Best-Fit Trend
$(\mu { m m})$	(arcsec)	
53	30	$p \approx 3.1\% (I/3.8 \times 10^5 M Jy/sr)^{-0.01} (S/14.2^{\circ})^{-0.87}$
89	30	$p \approx 2.6\% (I/2.4 \times 10^5 M Jy/sr)^{-0.09} (S/12.5^{\circ})^{-0.90}$
154	30	$p \approx 1.9\% (I/1.0 \times 10^5 M Jy/sr)^{-0.19} (S/12.5^{\circ})^{-0.84}$
214	30	$p \approx 2.3\% (I/0.42 \times 10^5 M Jy/sr)^{-0.21} (S/8.6^{\circ})^{-0.70}$

Fissel+ (2016) found evidence for loss of grain alignment in Vela C:

$$p \propto I^{-0.45}$$
$$p \propto S^{-0.60}$$

But, Vela C is 15 K, OMC-1 is 37 K, so much more (30x) radiation in OMC-1 cores (perhaps due to embedded stars)

Davis-Chandrasekhar-Fermi: Estimating the Magnetic Field Strength

- DCF [Davis (1951); Chandrasekhar & Fermi (1953)] equate the kinetic energy from turbulence with the dispersion in the polarization vectors (magnetic field) to estimate the magnetic field strength.
- Issue: The large scale field can masquerade as "turbulence" in the simple picture.
- Houde+ (2009, 2011, 2016) Use the dispersion function (2 point correlation of field directions) to fit out the large scale field and marginalize over variations within the beam column.

$$1 - \langle \cos[\Delta\phi(l)] \rangle$$

= $\frac{1}{1 + \mathcal{N}\left[\frac{\langle B_l^2 \rangle}{\langle B_0^2 \rangle}\right]^{-1}} \left\{ 1 - \exp\left(-\frac{l^2}{2(\delta^2 + 2W^2)}\right) \right\} + a_2 l^2$

$$\mathcal{N} = \frac{(\delta^2 + 2W^2)\Delta'}{\sqrt{2\pi}\delta^3}. \qquad \qquad \Delta'' \equiv \Delta' \left(\frac{\langle B_t^2 \rangle}{\langle B_0^2 \rangle}\right)^{-1} \quad \begin{array}{c} \text{Defin} \\ \text{becau} \\ \text{between the set of the set o$$

Define this parameter because of degeneracy between parameters

Davis-Chandrasekhar-Fermi: Estimating the Magnetic Field Strength

Wavelength	a_2	δ	$\Delta^{\prime\prime}$	
$[\mu m]$	$[10^{-3} \text{ arcmin}^{-2}]$	[arcsec]	[arcsec]	
BNKL				
53	$144.67^{+9.38}_{-10.03}$	$9.26^{+0.26}_{-0.25}$	$364.12_{-4.59}^{+4.39}$	
89	$74.34^{+1.92}_{-1.95}$	$10.26\substack{+0.30 \\ -0.30}$	$387.36^{+9.41}_{-9.85}$	
154	$36.02^{+3.34}_{-3.70}$	$21.69^{+1.79}_{-1.67}$	$622.90^{+23.16}_{-22.55}$	
214	$7.15^{+3.25}_{-3.47}$	$33.85^{+2.68}_{-2.61}$	$707.10^{+30.59}_{-30.76}$	
BAR				
53	$444.89^{+30.14}_{-32.40}$	$7.67\substack{+0.27 \\ -0.27}$	$84.51^{+1.25}_{-1.24}$	
89	$158.65\substack{+8.59\\-8.69}$	$10.24_{-0.20}^{+0.21}$	$94.74^{+1.08}_{-1.09}$	
154		4 <u></u> 95		
214				
HII				
53	$43.12_{-0.28}^{+0.28}$	$3.91\substack{+0.06 \\ -0.07}$	$411.91^{+11.5}_{-11.78}$	
89	$18.85^{+1.48}_{-1.55}$	$9.29_{-0.57}^{+0.57}$	$744.77_{-50.14}^{+46.93}$	
154	$12.60\substack{+0.73\\-0.73}$	$9.37\substack{+0.42 \\ -0.59}$	$941.24_{-95.68}^{+43.67}$	
214	$14.78_{-0.74}^{+0.73}$	$10.20^{+0.61}_{-1.09}$	$888.12_{-174.00}^{+82.86}$	

$$B_0 \simeq \sqrt{4\pi\rho}\sigma(v) \left[\frac{\langle B_t^2 \rangle}{\langle B_0^2 \rangle}\right]^{-1/2} = \sqrt{4\pi\rho}\sigma(v) \left[\frac{\Delta'}{\Delta''}\right]^{-1/2}$$

Wavelength	$N(H_2)$	$\frac{\langle B_t^2 \rangle}{\langle B_0^2 \rangle}$	B_0	\mathcal{N}
$[\mu m]$	$[\mathrm{cm}^{-2}]$	0	$[\mu G]$	
BNKL				
53	$(9.85\pm8.96)\times10^{22}$	0.37	1002	6.67
89		0.43	931	8.42
154	• • •	0.37	1013	5.02
214		0.42	944	4.02
BAR				
53	$(3.87 \pm 2.12) \times 10^{22}$	1.61	303	8.50
89		1.77	289	8.44
154	• • •		-	
214	• • •		-	
HII				
53	$(5.90\pm3.24)\times10^{21}$	0.33	261	24.59
89		0.23	316	9.76
154		0.24	305	19.32
214	• • •	0.34	259	30.23

The BN/KL Explosion: Magnetic Implications

Declination

The BN/KL Explosion: Magnetic Implications

Inner Part of the Explosion (corresponding to ~isotropic CO fingers)

$$B_{\rm crit} = \sqrt{8\pi u_M} = 14.4 \left(\frac{D}{400\,{\rm pc}}\right)^{-3/2} \left(\frac{\theta}{30''}\right)^{-3/2} \left(\frac{E}{2\times10^{47}\,{\rm ergs}}\right)^{1/2} \,{\rm mG}.$$

Outer Part of the Explosion (corresponding to bipolar H2 fingers)

$$B_{\rm crit} = 0.6 \left(\frac{D}{400\,{\rm pc}}\right)^{-3/2} \left(\frac{\theta_R}{30''}\right)^{-1} \left(\frac{\theta_H}{230''}\right)^{-1/2} \left(\frac{E}{2\times 10^{45}\,{\rm ergs}}\right)^{1/2} \,{\rm mG}.$$

From the DCF analysis, B~1.0 mG. Therefore, we expect the magnetic field to be subdominant to the kinetic energy density near the center, but dominate farther out.

Conclusions

- New maps of temperature and col. Density
- Magnetic field structure of OMC-1 is indicative of Magnetically-regulated star formation, but also traces the dynamics of the region
- No evidence for decreased grain alignment in cloud cores
- Magnetic field strength estimates: 1 mG in BN/KL regions, ~300 microgauss elsewhere.

Software Acknowledgments

- python, Ipython (Pérez & Granger 2007)
- numpy (van der Walt et al. 2011)
- scipy (Jones et al. 2001) matplotlib (Hunter 2007)
- emcee (Foreman-Mackey et al. 2013)
- corner (Foreman-Mackey 2016)
- astropy (Astropy Collaboration et al. 2013; Price-Whelan et al. 2018)
- LIC code (ported from public available IDL source by Diego Falceta-Gonçalves).