New Observational Views on the Chemistry of Diffuse Interstellar Clouds

Helmut Wiesemeyer MPIfR Bonn SOFIA Community Tele Talk 2018 June 27

Collaborators:

R. Güsten, K.M. Menten, J. Stutzki, T. Csengeri, C. Durán, H.W. Hübers, A.M. Jacob, B. Klein, D.A. Neufeld, H. Richter, O. Ricken, C. Risacher, R. Simon, B. Winkel, F. Wyrowski

Acknowledgements:

SOFIA telescope and mission support, insightful discussions with M. Gerin and P. Goldsmith

Overview

- Introduction: Phases of the ISM, diffuse gas characteristics, reaction kinetics.
- Diffuse gas tracers, observational techniques, quantitative analysis.
- Putting it all together: Chemical reaction networks and observed abundances.
- Towards a more realistic -and complex- picture

Phases of the ISM

Characteristics of interstellar clouds

	Diffuse Atomic	Diffuse Molecular	Translucent	Dense Molecular
Definition	f ⁿ _{H2} < 0.1	$f^{n}H_{2} > 0.1$ $f^{n}_{C}^{+} > 0.5$	f ⁿ _{C+} < 0.5 f ⁿ _{CO} < 0.9	f ⁿ _{CO} > 0.9
A _v >	0	~ 0.2	~ 1 – 2	~ 5 - 10
n _H ~ [cm ⁻³]	10 - 100	100 - 500	500 - 5000	> 10 ⁴
T _{gas} [K]	30 - 100	30 - 100	15 – 50 ?	10 - 50
Technique	UV/Vis abs., HI λ21cm	UV to mm abs,	IR absorption, FIR to radio em.	

Freely adapted from Snow & McCall 2006, ARA&A 44.

Characteristics of interstellar clouds

R Snow TP, McCall BJ. 2006. Annu. Rev. Astron. Astrophys. 44:367–414

 $(AB)^*$ A + B C + D

Potential energy curve for an exothermic reaction with activation energy ΔG

r

exothermic

endothermic

Gerin M, et al. 2016.

K Annu. Rev. Astron. Astrophys. 54:181–225

weakly endothermic ($\Delta E/k_{\rm B} \sim 1000$ K)

Observational techniques: Absorption spectroscopy towards bright background sources

Galactography from Vallée (2014)

▲ Sheffer et al. (2008), far-UV (H₂)/optical (CH)

 Jensen et al. (2005), UV (OI)

 Wiesemeyer et al. (2016, 2018), FIR: OI, OH, OH⁺, CH, distances: Reid ea. 2014

Observational Techniques: UV/optical vs. FIR/submm absorption

Optical sample spectrum of CH A-X (0-0), λ 4300Å, velocity resolution 1.8 km/s (Sheffer et al. 2008)

Far-infrared sample spectrum of CH ${}^{2}\Pi_{1.2}$ J = 3/2 \leftarrow 1/2, λ 149 μ m, velocity resolution 0.3 km/s (smoothed, Wiesemeyer et al. 2018)

UV/Optical Spectroscopy

- Restricted to local arm ± a few kpc.
- Examination of sightlines off the Galactic plane.
- Spectral resolution: FUSE: R ~ 10⁴, HST-STIS: R ~ 6 x 10⁴, optical: R ~ 1.7 10⁵
- Needs excitation modeling and extinction corrections.

FIR Spectroscopy

- Does not suffer from extinction (but absorption may saturate).
- Restricted to FIR-bright targets (hot dust from star forming regions)
- Spectral resolution: R ~ 10⁷ (upGREAT, LFA)
- Ground state transitions,, no extinction corrections needed:

$$\tau_{ij,\nu} = \sqrt{\frac{\ln 2}{\pi}} \frac{A_{\mathrm{E},j}c^3}{4\pi\Delta\nu_i\nu_j^3} \frac{g_{\mathrm{u},j}}{g_{\mathrm{l},j}} N w_j \exp\left(-4\ln 2\left(\frac{\nu-\nu_{0,ij}}{\Delta\nu_i}\right)^2\right),$$

Quantitative Analysis: Surrogates for H₂

Primary tracers:

- FIR ground-state lines of HF, OH, CHI H_2O
- HF, OH and H_2O saturate frequently.
- CH and OH do not necessarily trace the same environment, but are correlated.
- The λ 63 µm fine structure line of [OI] traces the hydrogen reservoir 2N(H₂)+N(HI)

Secondary tracers:

- Radio lines of OH and CH.
- HCO⁺ J = 1 ← 0 (correlates with OH, Liszt & Lucas 1996),
- Some hyperfine components of OH and CH appear in emission and absorption.
- Also probe physical conditions (n, T), not just column density, but collisional rates uncertain.

10/20

Wiesemeyer et al. (2016)

Quantitative analysis: Devonvolution from hyperfine structure and component separation

- The blend between hyperfine structure and overlapping velocity components requires a deconvolution strategy, like
- "Shift and subtract" (e.g., Gerin et al. 2010),
- principal component analysis (e.g., Neufeld et al. 2015 → et al. 2018 in prep.),
- Wiener-filter deconvolution (Jacob et al. 2018 in preparation),
- merit function minimization, e.g., Levenberg-Marquardt optimization (Schilke et al. 2001), simulated annealing (e.g., Wiesemeyer et al. 2016, 2018).

Right: Deduced column density profile.

Correlations

N(OI) vs. $2N(H_2)+N(HI)$ Wiesemeyer et al. 2016

N(OH)/N(OH⁺) vs. f_{H2}^{N} Wiesemeyer et al. 2016

> Left: CH vs OH Wiesemeyer ea 2018 Liszt & Lucas 2002

Right: HCO⁺ vs OH Lucas & Liszt 1996

Dissociative recombinations				Photodissociation]		
$\alpha [10^{-10} \text{ s}^{-1}] \text{ for } \text{T} = 100 \text{ K},$ n = 10 ⁻² cm ⁻³				$\alpha \ [10^{-10} \ s^{-1}]$ for $A_v = 0.2$						
н _{е-} то	om				ОН	+ + ν	\rightarrow	H+ + O	0.05	
			•		ОН	+ ν	\rightarrow	H + O	2.49	
OH⁺	+ e-	→ H	+ O	1.1			\rightarrow	e ⁻ + OH	+ 0.01	
H₂O⁺	+ e ⁻	→ H +	H+O	52.8	H ₂ C) + ν	\rightarrow	H + OH	5.15	
L		→ H	+ OH	14.9			\rightarrow	e ⁻ + H ₂ C	0+ 0.14	Connection to C network
		→ O	+ H ₂	6.8	En	dothermi	c rea as	ctions & s sociation	low radiative	$OH+C^+ \rightarrow H+CO^+$
$H_{3}O^{+}$	+ e ⁻	→ H+	H + OH	45.0	0	+ H	\rightarrow	γ +	OH <~10 ⁻⁶	
		→ H → H	+ H ₂ O + OH	19.1 10.4	0	+ H.	\rightarrow	, Н +	ОН	Source:
		→ H +	0+ H ₂	1.0	O(1	D) + H	\rightarrow	6.34 s ⁻¹ 6 H +	exp(-4000/T[K]) OH 103.	KIDA Database
					, 2				Wakelam ea. 2012	
Hydrogen abstraction reactions			ОН	+ H	\rightarrow	$H_2 + O$		/kida.obs.u-bordeaux1.fr		
α [10 ⁻¹⁰ s ⁻¹] for n _{H2} = 10 ² cm ⁻³					< -	~ 0.001 s ⁻¹	exp(-1950/T[K])			
OH⁺	+ H ₂	$\rightarrow H_2C$)+ + H	1100	ОН	+ H	\rightarrow	γ +H ₂	<mark>○</mark> < ~10 ⁻⁵	
H_2O^+	+ H ₂	. → H ₃ C)+ + H	610	ОН	+ H ₂	→	H + H ₂ O 7.7 s ⁻¹ e	xp(-2100/T[K])	13/20

Meudon PDR Code Employed to Evaluate OH Abundance Under Different Conditions (credits to Paul Goldsmith)

- All runs have total extinction equal to 10 mag
- ISRF is standard Habing field ($G_0 = 1$) or 10x standard ($G_0 = 10$)
- Hydrogen nucleus density, n_{H} , is 50 cm⁻³ or 200 cm⁻³
- Standard cosmic ray rates throughout; no enhanced rate at cloud edges as indicated by e.g. H₃⁺ and other chemical tracers
- Standard grain properties
- Depleted sulfur abundance in accordance with most modeling

OH is a remarkably resilient tracer of total hydrogen nucleus density throughout the range $0 < A_V < 3$ mag, according to chemical modeling.

Larger G_0 heats cloud edge, thus increases OH formation rate but also increases the photodestruction rate.

No substantial variation, unlike CO which depends on selfshielding for protection against line photodissociation, and C⁺ which disappears when CO builds up.

Higher density pushes H^0/H_2 transition to lower A_V , compensating the effect of higher G_0 . **16/20**

The case of CH – environmental diversity ?

Warm neutral-neutral chemistry

- The over-abundance of CH⁺ (e.g., Elitzur & Watson 1978) is puzzling, due to the endothermicity of the key reaction C⁺(H₂,H)CH⁺ (4640 K).
- The dissipation of turbulence, C-type shocks, or ion-neutral friction can supply the activation energy (Godard ea 2014).
- This yields to an increased abundance of CH thanks to fast hydrogen abstraction reactions of CH⁺ and the subsequent dissociative recombination of CH₃⁺.
- OH and CH behave differently in quiescent and turbulent gas.

Phase diagrams of the TDR model (Godard et al. 2014)

Left: $n_{H} = 50 \text{ cm}^{-3}, A_{V} = 0.1 - 1.0 \text{ mag}$ Right: Av = 0.4 mag, $n_{H} = 20 - 300 \text{ cm}^{-3}$

Towards more complexity – and reality ?

TDR model: Chemical enrichment due to endothermic reaction pathways only on a fraction of the sightline (Godard et al. 2014, Fig. 2) \rightarrow

MHD simulations (Valdivia et al. 2017a,b) \downarrow

- Highly anisotropic A_v
- Ttransport of H₂ formed in UV shielded regions towards warmer regions where it triggers a warm chemistry.
- Magnetic fields slow down formation of denser structures, but also lead to more complexity. 19/20

Summary

The chemistry of the cold neutral medium, i.e., precursors of molecular clouds, is reasonably well understood.

Far-infrared spectroscopy with HIFI and SOFIA, completed with radio data, suggests that OH and CH are reliable surrogates for H_2 in CO-dark diffuse gas.

However, at low column densities CH tends to be over-abundant, presumably thanks to the endothermic production path of CH⁺.

This observational evidence is confirmed by recent theoretical studies with a remarkable degree of complexity, assisted by experimental determinations of reaction rates at a relevant range of temperatures.

Caveat: Spectral features, even at the velocity of a single spiral arm crossing, do not necessarily represent a single cloud entity, but rather a weighted average of a complex medium.