Discovery of the Linear Carbon Chain Molecules ¹³CCC and C¹³CC Towards SgrB2(M)

Thomas Giesen

Laboratory for Astrophysics, Institute of Physics, University of Kassel, Kassel D-34132, Germany

July 8, 2020

SOFIA GREAT Receiver

Front-End: LFAH

Two 7-pixel arrays at two polarizations (H,V). Both polarizations can be tuned to the same frequency (LFAH range), or two separate frequencies on a best effort basis. Frequencies (GHz)

1835-2007

Lines of Interest

[CII] 158 μ m, CO, OH, ${}^{2}\Pi_{1/2}$, 12 CH, 13 CH NEW: C₃ 13 CCC C 13 CC

SOFIA GREAT HETERODYNE RECEIVERS

Lowest bending vibration of C₃ at 1.9 THz

COSSTA Terahertz-Sideband Spectrometer / Cologne

T.F. Giesen, A. O. Van Orden, J.D. Cruzan, R.A. Provencal, R.J. Saykally, R. Gendriesch, F. Lewen, G. Winnewisser, *Astrophys. J.* 551, L181, (2001)

Experimental setup at University of Kassel / Germany

Supersonic Jet Spectrometer for Terahertz Applications (SuJeSTA)

Reaction Chamber

Lowest bending mode of ¹³C-substituted C₃ and an experimentally derived structure

A.A. Breier, T. Büchling, R. Schnierer, V. Lutter, G.W. Fuchs, K.M.T. Yamada, B. Mookerjea, J. Stutzki, T.F. Giesen, J. Chem. Phys. 145, 23 (2016)

Laboratory Spectra of C_3 and its Isotopologues at 1.8 – 1.9 THz

Excimer JV-Strah

248 nm

Abundances and Intensities of ¹²C¹³C¹²C and ¹³C¹²C¹²C

GHz

¹³CCC and C¹³CC observations

with SOFIA GREAT and upGREAT

Observations started from New Zealand

Target : SgrB2(M)

Data Analysis

averaged ¹³CCC_Q(4) spectrum:

- 3 tunings from 2015
- 1 tuning from 2016, corrected for sideband absorption as derived from 2015 tunings

¹³CCC_Q(2) CCC_Q(6)

- \rightarrow convincing detection of ^3CCC !
 - two lines with consistent profile
 - profile consistent with lower velocity component of C_3 absorption

-2015: CCC_Q(6), 13CCC_Q(2), 13CCC_Q(4) (3 tunings) during 40 minutes in-flight time

- 2016: 13CCC_Q(4) (one additional tuning) during 30 minutes in flight-time

First Interstellar Detection of the Carbon Chain Molecules ¹³CCC and C¹³CC toward SgrB2(M)

Transition	Frequency MHz	Einstein A_{ul} s ⁻¹	E _l K	81	8u
C ¹³ CC					
Q(2)	1819596.013	0.01309	3.7	5	5
Q(4)	1825647.312	0.01322	12.4	9	9
13000					
	1882638 260	0.01450	37	5	5
Q(2) Q(4)	1888501.880	0.01463	12.4	9	9

Parameters for Observed C¹³CC and ¹³CCC

Ro-vibrational spectra of C¹³CC observed towards SgrB2(M) H-polarization (filled spectrum), V-polarization (red).

Ro-vibrational spectra of ¹³CCC observed towards SgrB2(M)

C¹³CC and ¹³CCC Observational Settings SOFIA/GREAT (G) and upGREAT (upG) Receivers

Transition	Rec.	Obs. Date	$v_{ m off}^*$	$T_{\rm int}$	$T_{\rm rms}$
			km/s	min	mК
$^{-13}$ CCC - Q(2)	G	19 July 2015	+10.0	6.8	99
13 CCC - Q(4)	G	19 July 2015	+0.0	27.9	62
	upG	9 June 2016	-10.0	12.5	96
$C^{13}CC - Q(2)$	upG	28 June 2017	0.0	5.7	112
	upG	28 June 2017	+10.0	5.1	150
$C^{13}CC - Q(4)$	upG	28 June 2017	0.0	8.5	56
	upG	28 June 2017	+10.0	2.8	150

* Velocity offset of LO setting relative to the v_{LSR}

Ro-vibrational Transitions of the Main Isotopologue CCC

T. F. Giesen, B. Mookerjea, G. W. Fuchs, A. A. Breier, D. Witsch, R. Simon, J. Stutzki, A&A 2020, 633, A120

Parameters for the Observed CCC Transitions.

Transition	Frequency	Einstein A _{ul}	E_l	81	g_u
	MHz	s ⁻¹	K		
CCC					
Q(2)	1890558.188	0.01468	3.7	5	5
Q(4)	1896706.838	0.01482	12.4	9	9
Q(6)	1906337.907	0.01505	26.0	13	13
P(2)	1836823.502	0.00449	3.7	5	3
P(4)	1787890.534	0.00532	12.4	9	7
P(6)	1741122.646	0.00521	26.0	13	11
P(8)	1696525.363	0.00495	44.6	17	15
P(10)	1654087.900	0.00466	68.1	21	19
P(12)	1613805.250	0.00437	96.6	25	23

Observed CCC Transitions in SgrB2(M)

Data Analysis of C₃ CCC, ¹³CCC and C¹³CC

Table 3. Summary of observed and derived quantities for the CCC, $C^{13}CC$, and ^{13}CCC transitions.

	$ au_{\mathrm{peak}}$	$v_{\rm LSR}$	Δv	$\int \tau dv$	$N_{J_1} \times 10^1$
		$km s^{-1}$	$km s^{-1}$	$km s^{-1}$	cm^{-2}
CCC					
Q(2)	0.53	63.9(1)	11.6(2)	6.6(1)	32.6(5)
Q(4)	0.56	64.4(1)	13.7(2)	8.3(1)	40.9(5)
Q(6)	0.87	64.3(1)	12.5(1)	11.5(1)	56.6(5)
P(2)	0.15	63.5(3)	12.7(8)	2.0(1)	49.8(25)
P(4)	0.34	63.8(1)	12.5(3)	4.5(1)	67.8(15)
P(6)	0.39	63.4(1)	12.5(3)	5.2(1)	68.5(13)
P(8)	0.31	64.4(1)	13.0(4)	4.2(1)	52.1(12)
P(10)	0.24	65.7(2)	11.7(4)	2.9(1)	34.9(12)
P(12)	0.15	65.5(4)	13.0(8)	2.1(1)	24.8(12)
C ¹³ CC	(<i>a</i>)				
Q(2)	0.046	62.0(3)	10.8(7)	0.53(3)	2.64(15)
Q(4)	0.040	62.0(4)	10.8(10)	0.46(4)	2.28(20)
¹³ CCC					
Q(2)	0.027	62.8(8)	11.1(15)	0.32(4)	1.58(20)
Q(4)	0.021	62.9(3)	11.6(6)	0.26(1)	1.26(5)

Rotational Diagram of C₃ CCC, ¹³CCC and C¹³CC

$$N_{J_{1}} = \frac{8\pi\nu^{3}}{c^{3}} \frac{g_{1}}{A_{\rm ul} g_{\rm u}} \left[1 - \exp\left(-\frac{h\nu}{k_{\rm B} T_{\rm ex}}\right) \right]^{-1} \int \tau d\nu \qquad \text{Eq (1)}$$

Data Analysis of C₃ CCC, ¹³CCC and C¹³CC

Table 3. Summary of observed and derived quantities for the CCC, $C^{13}CC$, and ^{13}CCC transitions.

	$ au_{\mathrm{peak}}$	$v_{ m LSR} \ m km s^{-1}$	$\Delta \upsilon$ km s ⁻¹	$\int \tau dv \ \mathrm{km \ s^{-1}}$	$N_{J_1} \times 10^{13}$ cm ⁻²
CCC					
Q(2)	0.53	63.9(1)	11.6(2)	6.6(1)	32.6(5)
$\tilde{Q}(4)$	0.56	64.4(1)	13.7(2)	8.3(1)	40.9(5)
$\widetilde{Q}(6)$	0.87	64.3(1)	12.5(1)	11.5(1)	56.6(5)
P(2)	0.15	63.5(3)	12.7(8)	2.0(1)	49.8(25)
P(4)	0.34	63.8(1)	12.5(3)	4.5(1)	67.8(15)
P(6)	0.39	63.4(1)	12.5(3)	5.2(1)	68.5(13)
P(8)	0.31	64.4(1)	13.0(4)	4.2(1)	52.1(12)
P(10)	0.24	65.7(2)	11.7(4)	2.9(1)	34.9(12)
<i>P</i> (12)	0.15	65.5(4)	13.0(8)	2.1(1)	24.8(12)
$\overline{C^{13}CC}$	(<i>a</i>)				
O(2)	0.046	62.0(3)	10.8(7)	0.53(3)	2.64(15)
$\tilde{Q}(4)$	0.040	62.0(4)	10.8(10)	0.46(4)	2.28(20)
¹³ CCC					
Q(2)	0.027	62.8(8)	11.1(15)	0.32(4)	1.58(20)
$\widetilde{Q}(4)$	0.021	62.9(3)	11.6(6)	0.26(1)	1.26(5)

Notes. ^(a)Only H-polarization data was used.

$$N_{J_{1}} = \frac{8\pi\nu^{3}}{c^{3}} \frac{g_{1}}{A_{\rm ul} g_{\rm u}} \left[1 - \exp\left(-\frac{h\nu}{k_{\rm B} T_{\rm ex}}\right) \right]^{-1} \int \tau d\nu \qquad \text{Eq (1)}$$

Rotational Diagram of C₃ CCC, ¹³CCC and C¹³CC

$$Q_{\rm rv} = \sum_{J_{\rm l}(\rm v=0,1,2)} (2J_{\rm l}+1) g_{\rm v} \exp\left(\frac{-E_{\rm rv}(J_{\rm l},\rm v)}{k_{\rm B}T_{\rm ex}}\right) \quad {\rm Eq~(2)}$$

Results for ¹²C/¹³C Ratios

	$T_{\rm ex}({\rm K})$	$\log(N_0)$	$Q_{ m rv}$	$N \times 10^{14}$	rel.
				cm^{-2}	
CCC	$44.4_{-3.9}^{+4.7}$	13.92(04)	46.64	$38.8^{+3.9}_{-3.5}$	100%
C ¹³ CC	44.4	12.64(16)	47.66	$2.1^{+0.9}_{-0.6}$	$5 \pm 2\%$
¹³ CCC	44.4	12.40(18)	97.30	$2.4^{+1.2}_{-0.8}$	$6 \pm 3\%$

$$N = Q_{\rm rv} \frac{N_{J_{\rm l}}}{2J_{\rm l}+1} \exp\left(\frac{E_{\rm rot}(J_{\rm l})}{k_{\rm B}T_{\rm ex}}\right) \qquad {\rm Eq~(3)}$$

MEASURED RATIO
 EXPECTED RATIO

$$N(CCC)$$
 : $N(^{13}CCC)$: $N(C^{13}CC)$
 $N(CCC)$: $N(^{13}CCC)$: $N(C^{13}CC)$
 18.6 : 1.2 : 1.0
 20 : 2.0 : 1.0

 MEASURED RATIO
 EXPECTED RATIO

 $\frac{^{12}C}{^{13}C}$ = $\frac{3N(CCC)}{N(^{13}CCC)+N(C^{13}CC)}$ = 25.8
 $\frac{^{12}C}{^{13}C}$ = 20

Total vs. Line by Line Ratio of Column Densities

N^a/N^b	$\frac{N(\text{CCC})}{N(\text{C}^{13}\text{CC})}$	$\frac{N(\text{CCC})}{N(^{13}\text{CCC})}$	$\frac{N(^{13}\text{CCC})}{N(\text{C}^{13}\text{CC})}$	$\frac{{}^{12}\text{C}}{{}^{13}\text{C}}$
$\begin{array}{c} \hline TOTAL \\ \hline Q(2) \\ Q(4) \end{array}$	18.6(7.0) 12.1(0.7) 17.6(1.6)	16.0(6.7) 9.9(1.3) 15.6(0.6)	1.2(0.6) 1.2(0.2) 1.1(0.1)	25.8(7.5) 16.3(1.2) 24.7(1.2)
AV EXPEC	14.8(2.7) ^(a) 20	12.7(2.8) ^(a) 10	$\frac{1.2(0.1)}{2}^{(a)}$	20.5(4.2) ^(a) 20

Line by Line Ratio of Column Density $\frac{N(a)}{N(b)} = \frac{Q_{\rm rv}^a N_{J_1}^a (2J_1^b + 1)}{Q_{\rm rv}^b N_{J_1}^b (2J_1^a + 1)} \cdot \exp\left(\frac{\Delta E_{\rm rot}}{k_{\rm B}T_{\rm ex}}\right) \quad \text{Eq (4)}$

Exchange and Rearrangement Reactions

$$X(^{12}C) + {}^{13}CCC \rightleftharpoons C^{13}CC + X(^{12}C) + \Delta E_0 Eq (5)$$

Equilibrium Reaction Rate

$$k_p = \exp\left(\frac{-\Delta G}{k_B T_{\text{ex}}}\right) = \frac{Q^{13}\text{CCC}}{Q^{C^{13}\text{CC}}}\exp\left(\frac{-\Delta E_0}{k_B T_{\text{ex}}}\right) \quad \text{Eq (6)}$$

 ΔG = Difference in Gibbs energy ΔE_{0} = Difference in zero point energy

Low Temperature Equilibrium at 44 K

$$\frac{N(^{13}\text{CCC})}{N(\text{C}^{13}\text{CC})} = \frac{1.4}{1}$$
 measured: $\frac{1.2}{1}$

- At low temperatures of 44 K the N(¹³CCC)/N(C¹³CC) ratio shifts from 2.0 to 1.4, which is in much better agreement with the measured ratio of 1.2(1)
- The ¹²C/¹³C ratio in SgrB2(M) derived from C₃ isotopologues is 20.5 +/- 4.2, which is in good agreement with the result of 20 derived from earlier measurements
- Need of further ¹³C₃ measurements with SOFIA in other astronomical sources, including higher *J*-transitions