THE EVOLUTION OF RED SUPERGIANTS TO SUPERNOVA

Emma Beasor NASA Hubble Fellow NOIRLab

Ben Davies (LJMU), Nathan Smith (U. Arizona), Nate Bastian (LJMU), Bob Gehrz (U. Minnesota), Don Figer (Rochester), Jacco van Loon (Keele)

SOFIA Tele-talk, July 15th 2020

Outline

- Introduction to RSGs
- Evolution of RSGs to SN
- Mass-loss
- Age determinations
- Summary

RED SUPERGIANTS

- \odot Evolved massive stars (8-25 $M_{\odot})$
- Direct progenitors to Type II
 SN *powerful test of stellar evolutionary theory*

EVOLUTION OF A $15\,M_\odot\,$ Star

Core contracts... star swells up

EVOLUTION OF A $15\,M_\odot\,$ Star

Core contracts, star swells up. Lots of convection in the envelope

EVOLUTION TO RSG PHASE

THE PATH TO SUPERNOVA

- He-core gets exhausted, fuses into carbon core, which fuses into oxygen, which fuses into neon...
- Core gets heavier and heavier
- No more nuclear reactions
- Star collapses onto the core...

Core-collapse supernovae

THE PATH TO SUPERNOVA

- What kind of SN depends on the appearance of the progenitor at core collapse
- Strong winds peel away envelope
- RSGs live ~10⁶ yrs, mass-loss timescale (M/Mdot) is about the same
- Whole envelope can be peeled off through lifetime

TWO OPTIONS...

- 'Wolf-Rayet' (hot progenitor)
- Stripped/H-poor SN (type lbc)
- RSG/YSG progenitor
- H-rich envelope intact
- Unstripped SN (Type II)

We know RSGs explode as II-P SNe

SN —> check archival images —> identify progenitor

Pre-explosion photometry + *some* assumptions allow us to find the terminal luminosity of the progenitor and infer a mass

Red supergiant problem...

Smartt et al. 2009, updated in Smartt 2015

EVOLUTION FROM MS TO RSG

...MODEL DEPENDENT

MASS-LOSS RATE IMPLEMENTATION

EMPIRICAL MASS-LOSS RELATIONS

EMPIRICAL MASS-LOSS RELATIONS

-3 Mass-loss rates are *not* calculated from dusty RSGs rate) first principles -4 van Loon+ Lots of internal 2005 loss scatter -5 ± x10 log (Mass ewegen+ 2009 -6 de Jager Bonano -7 5.5 4.5 5 4 log (Luminosity)

Mass loss rates in the Hertzsprung-Russell diagram

C. de Jager $(^{1,2})$, H. Nieuwenhuijzen $(^{1,2})$ and K. A. van der Hucht $(^{1})$

(¹) Laboratory for Space Research, Beneluxlaan 21, 3527 HS Utrecht, The Netherlands

(²) Astronomical Institute, University of Utrecht, Utrecht, The Netherlands

Received January 19, accepted June 19, 1987

Needs a bit of an update...

Summary. — From the literature we collected values for the rate of mass loss for 271 stars, nearly all of population I, and of spectral types O through M. Rates of stellar mass loss determined according to six different methods were compared

★ Highly heterogeneous sample (masses, metallicities...)

★ Highly heterogeneous methodologies (mid-IR excesses, abs line analysis, radio...)

★ No longer used for OBA

- U : from ultraviolet spectra, mainly from far UV resonance line profiles;
- V : from spectral lines in the visual and near ultraviolet spectral ranges, mainly subordinate lines such as H_{α} , but in some cases also from other lines, including the H and K lines;
- I : from broad-band infrared photometric data, assuming the flux to be due to free-free emission;
- C : from infrared data on C-molecular compounds ;
- M : from maser lines in the microwave range ;
- R : from radio continuum data : radiofluxes due to free-free emission, i.e. excluding data of stars for which the radio emission is assumed to be synchrotron radiation (cf. e.g. Underhill, 1984a).

REAPPRAISAL OF RSG MASS-LOSS

 By targeting RSGs in clusters, we can assume all RSGs are the same Z and same M_{ini}

HOW DO WE MEASURE MASS-LOSS RATES?

- Dust layer absorbs and re-emits photons
- Mass-loss can be measured by modeling mid-IR excess

HOW DO WE MEASURE MASS-LOSS RATES?

Wavelength

HOW DO WE MEASURE MASS-LOSS RATES?

wavelength

NGC2100

 Tight correlation...
 Fixed initial mass and Z

HOW DO MASS-LOSS RATES CHANGE WITH INITIAL MASS?

A MASS-DEPENDENT MASS-LOSS RATE PRESCRIPTION

A MASS-DEPENDENT MASS-LOSS RATE PRESCRIPTION

COMPARISON TO OTHER PRESCRIPTIONS

Lower scatterNo offset

- Scatter slightly higher
- Avg offset = 0.13
- BUT much worse for higher luminosity stars...

Beasor et al. 2020

COMPARISON TO EVOLUTIONARY MODELS

Beasor et al. 2020

What does it all mean...

- Observed H-poor SN fraction ~ 1/3
- Back of the envelope IMF calculation...

% stars $8-30M_{\odot} \sim 85\%$ % stars $>30M_{\odot} \sim 15\%$

What does it all mean...

 If mass-loss rates were higher... could explain this discrepancy

% stars $8-16M_{\odot} \sim 60\%$ % stars $>16_{\odot} \sim 40\%$

What does it all mean...

- But, mass-loss rates are lower
- Single star evolution cannot explain the observed SN rate
- Strong evidence for most
 H-poor SN being the
 products of binary
 interaction

Smith et al. 2011

CONCLUSIONS: Part 1

- There is no observationally motivated reason to increase mass-loss by factors of 3 or more in stellar evolution models
- RSGs that evolve as single stars <u>do not</u> shed their envelope via quiescent mass loss
- Single stars between 20-30M $_{\odot}$ <u>do not</u> lose enough mass to evolve blueward
- The relative number of stripped/unstripped SN events predicted by single star models is way off
- Something else (binaries??) is removing the envelope

HOW WELL DO WE KNOW CLUSTER AGES?

USING THE CMD

- For old and intermediate age clusters (>50Myr), many observational effects can't be explain by SSP...
- e.g. blue stragglers

CMD of NGC 7419

METHOD 1: brightest TO star

METHOD 2: luminosity function of the TO

METHOD 3: lowest luminosity RSG

Results...

NGC 7419 - non-rotating

Big disagreement in ages between the methods

This is seen for **all** clusters in our sample

What's going on..?

Testing with synthetic clusters... - single stars

Single stars only. TO method underestimates the age by quite a lot

Testing with synthetic clusters... - binary fraction of 50%

Binary fraction of 50%.

Even worse for TO... RSGs do better.

CASE STUDY: Westerlund 1

Beasor et al. (submitted)

Supposedly a very young Galactic cluster (~4Myr), and massive (10⁵ Msun).

CASE STUDY: Westerlund 1

First time we've been able to attempt a bolometric luminosity for these RSGs...

CASE STUDY: Westerlund 1

Beasor et al. (submitted)

CONCLUSIONS: Part 2

- Using the cluster turn-off to estimate age will cause ages to be <u>underestimated</u>
- Using red supergiants allows a *binary independent* age to be determined
- There could be lots of mergers/mass transfer systems in young clusters
- Westerlund 1 probably isn't as young as people first thought