The O budget in lowmass protostars: The NGC1333-IRAS4A R1 shock observed in

[O I] 63 µm with SOFIA-GREAT

Lars E. Kristensen Center for Star & Planet Formation, Niels Bohr Institute, University of Copenhagen

A. Gusdorf, A. Karska, J.C. Mottram, R. Visser, H. Wiesemeyer, R. Güsten, R. Simon and special thanks to G. Sandell

Low-mass YSO evolution

Jet / wind present at all evolutionary stages

H₂O_{ice} H₂O_{gas} CO O

Kristensen et al. (2010, 2012), Mottram et al. (2014) 5

Dissecting a profile

- One profile: lots of H₂O moving!
- Bulk of emission in three components
- Velocity resolution allows for decomposition

Kristensen et al. (2012), Mottram et al. (2014)

Physical components

Cavity shocks

Protostellar wind

Kristensen et al. (2010, 2012, 2013), Mottram et al. (2014, 2017), Visser et al. (2012)

Evolutionary scheme

- Class 0: H₂O tightly linked to outflow, infall, molecular jet, profiles are the broadest + brightest
- Class I: envelope opens, outflow force decreases, expansion, profiles decrease in width + intensity

(Visser et al. 2012, Kristensen et al. 2012, Mottram et al. 2014)

Quest for H₂O abundance

- Step I: determine excitation conditions, particularly N(H₂O)
- Step II: Choose appropriate reference frame to get N(H₂)
- Step III: Calculate $x(H_2O) = N(H_2O) / N(H_2)$

Profile shape vs. excitation

- Similarity in profile shapes independent of excitation (different at outflow positions)
- Excitation conditions constant with v in each component

Kristensen et al. (2010) Mottram et al. (2014)

H₂O: subthermally excited

- RADEX excitation analysis
- Conclusion: small emitting area (10² AU), high temperature (~ 300 K), high column density (~10¹⁸ cm⁻²) high density (10⁵-10⁸ cm⁻³)

Mottram et al. (2014)

Surprisingly low X(H₂O): ~10-100 times "too little"?

• Where is the oxygen?

Kristensen et al. 2012, 2017b, Santangelo et al. 2013, 2014, Tafalla et al. 2013, Neufeld et al. 2014

HH46

Kristensen et al. 2012; van Kempen, Kristensen et al. (2010)

Herschel-PACS: FIR inventory

FIR line cooling budget

FIR cooling dominated by O-species Cooling not chemistry!

Karska et al. 2013, in prep., Podio et al. 2013

Complex water line profiles

• Velocity resolution: identifying physical components

[O I] emission lights up at shock spots

but where does [O I] emission come from?

Enter SOFIA-GREAT!

- [O I] 63 µm detected at R1 position
- Only seen in highvelocity component!
- HV component also seen in CO 16-15 (GREAT) and H₂O (HIFI)

Kristensen et al. 2017a

Excitation -> Oxygen budget

• Recipe:

Assume excitation from H₂O Apply to CO, < OH, and O Get N(CO), N(OH), N(O)Assume $X(O)_{volatile} = 3 \ 10^{-4}$ Calculate X(M)

• $X(H_2O) \sim 3 \ 10^{-5}$ $X(CO) \sim 2 \ 10^{-4}$ $X(OH) < 2 \ 10^{-5}$ $X(O) \sim 5 \ 10^{-5}$

Kristensen et al. 2017a

Low X(O) at high v: what does it mean?

- Atomic O is ~15% of total O budget at high v, ~85% molecular and primarily CO
- Volatile C/O ratio ~0.7
- Do the youngest sources host atomic/ionic jets? Why so much molecular material? Reformation, or molecular from the start? Implications for outflow energetics? mass loss rates and infall rates?
 One spectrum, one paper, many new questions!

What have we learnt?

- Lesson I: SOFIA-GREAT is delivering beautiful [O I] 63 µm spectra!
- Lesson II: Toward one shock position, [O I] traces only the high-velocity component and the bulk of O is in molecular form
- Lesson III: Systematic surveys are needed: do lessons from one source apply elsewhere? (Accepted C5 proposal: two new spectra not yet delivered, two more papers?)