

THE EMISSION AND DISTRIBUTION OF DUST OF THE TORUS OF NGC 1068

ENRIQUE LOPEZ RODRIGUEZ

Instrument Scientist (HAWC+) Stratospheric Observatory For Infrared Astronomy (SOFIA) / NASA elopezrodriguez@nasa.gov

COLLABORATORS:

Alonso-Herrero, A. (CSIC) Efstathiou, A. (U. of Cyprus) Fuller, L. (UT San Antonio) Ichikawa, R. (Columbia U.) Levenson, N. (STScI) Nikutta R. (NOAO) Packham, C. (UT San Antonio) Radomski, J. (SOFIA) Ramirez, E. (INAOE) Ramos Almeida C. (IAC) and HAWC+ Science Team

ACTIVE GALACTIC NUCLEI

THE TORUS

ACTIVE GALACTIC NUCLEI: THE CLUMPY TORUS

AGN TORUS: CLOUD DISTRIBUTION

Credit: Nikutta R.

AGN TORUS: DUST EMISSION DISTRIBUTION

composite

 The isolated emission from the nucleus using 10-m class telescopes can be reproduced using CLUMPY torus models.

Torus models using CLUMPY (Nenkova et al. 2002, 2008a,b)

Alonso-Herrero et al. (2011)

11

AGN SED: LACK OF FIR OBSERVATIONS WITH MODERATED RESOLUTIONS

Alonso-Herrero et al. (2011)

31.5 um imaging observations of AGN using FORCAST

31.5 um observations:

- Characterize the warm dust of the torus.
- Sample the peak emission of the torus, suggesting to occurs in the 30-40 um range.
- Reduce the uncertainties of the inferred family of CLUMPY torus models

Characterizing the warm/cold dust in the AGN torus:

Lack of 20-100 um coverage at moderate angular resolutions:

- Missing warm and cold dust in the torus
- How this affect the torus emission and morphology?

EMISSION AND DISTRIBUTION OF DUST IN THE TORUS OF NGC 1068

FORCAST & HAWC+ IMAGING OBSERVATIONS

Lopez-Rodriguez et al. (2018, ApJ, 859, 99)

THE RESOLVED TORUS OF NGC 1068: ALMA OBSERVATIONS

00°00'47

02000 0°00'48:0 c)

2^h42^m40.72

Torus size ~ 12x5 pc

Orientation of the torus ~ 110°

Highly inhomogeneous molecular torus

1000

THE RESOLVED TORUS OF NGC 1068: ALMA OBSERVATIONS

00°00'47

0°00'48'0

c)

2^h42^m40.72

Torus size ~ 12x5 pc **Orientation of the torus ~ 110°**

20 WAVELENGTH RANGE: 0.3-300 microns INSTRUMENTS: 7 First generation instruments: cameras, spectrometers & highspectrometers. New instrument: imager-polarimeter at 50-250 microns (HAWC+) AIRSPEED: Mach 0.85 (560 mph ~ 901 kmh) OBSERVING ALTITUDE: 37,000 - 45,000 ft ONBOARD STAFF: Flight crew 3; Mission crew 2-6, Scientist 1-3, Educators 5-15 AVERAGE SCIENCE FLIGHT LENGTH: 10 hours overnight

PI: Darren Dowell (JPL)

FORCAST <u>observes</u> total <u>emission</u> of dust grains in the range of 5-40 micrometers.

The infrared emission, detected by FORCAST, samples different dust temperatures in the range of 100K to 600K. HAWC+ <u>observes</u> <u>total</u> and <u>polarized emission</u> of dust grains at four different wavelengths in the range of 50-250 micrometers.

The far-infrared emission, detected by HAWC+, samples different dust temperatures in the range of 10K to 100K.

PI: Terry Herter (Cornell University)

PI: Darren Dowell (JPL)

Band / Wavelength	Δλ/λ	Angular Resolution	Total Intensity FOV (arcmin)	Polarization FOV (arcmin)	
A / 53 μm	0.17	4.7" FWHM	2.7 x 1.7	1.3 x 1.7	
Bª / 63 μm	0.15	5.8" FWHM	4.2 x 2.6	2.1 x 2.6	
C / 89 µm	0.19	7.8" FWHM	4.2 x 2.6	2.1 x 2.6	
D / 154 µm	0.22	14" FWHM	7.3 x 4.5	3.6 x 4.5	
E / 214µm	0.20	19" FWHM	8.0 x 6.1	4.0 x 6.1	

PI: Terry Herter (Cornell University)

SWC	Filters	LWC Filters			
λ _{eff} (μm)	Δλ (μm)	λ _{eff} (μm)	Δλ (μm)		
5.4	0.16	24.2	2.9		
5.6	0.08	25.3	1.86		
6.4	0.14	31.5	5.7		
6.6	0.24	33.6	1.9		
7.7	0.47	34.8	3.8		
8.6	0.21	37.1	3.3		
11.1	0.95				
11.3	0.24				
11.8	0.74				
19.7	5.5				
25.4	1.86				

FORCAST & HAWC+ OBSERVATIONS: NGC 1068 & PSF

Lopez-Rodriguez et al. (2018, ApJ, 859, 99)

RESIDUALS: NGC1068 - MODEL

NUCLEAR SED EMISSION: CLUMPY TORUS MODELS

We combined SOFIA (FORCAST & HAWC+) observations with 1-20 um imaging and spectroscopy, ALMA, and *Spitzer* observations.

- SED using 'moderate' (>1") and 'high' (PSF-fitting) angular flux measurements of the core of NGC 1068

Star forming regions dominates at wavelengths > 50 um.

Dust emission at ~10 um arises from polar emission and its characterized with a blackbody components dominating at ~200 K at scales > 10 pc.

The torus emission of the torus peaks in the 30-40 um range.

- This is the first detection and characterization of the AGN torus peak emission.

Smooth torus model under-estimates the FIR emission.

- If we force the smooth torus models to go through the FIR emission, then smooth models overestimate the torus size and cold dust emission.

Smooth torus model under-estimates the FIR emission.

- If we force the smooth torus models to go through the FIR emission, then smooth models overestimate the torus size and cold dust emission.

CLUMPY torus		Smooth torus			
Parameter	Symbol	Value	Parameter	Symbol	Value
Angular width	σ	43^{+12}_{-15}	Opening angle	θ_{OA}	37^{+23}_{-8} $^{\circ}$
Radial thickness	Y	18^{+1}_{-1}	Radial thickness	Y_s	20^{+4}_{-4}
Number clouds along the equatorial plane	N_0	4^{+2}_{-1}	-	-	-
Index of the radial density profile	q	$0.08^{+0.19}_{-0.06}$	Index of the radial density profile	q_s	1 (fixed)
Optical depth of each cloud	$ au_v$	70^{+6}_{-14}	Optical depth of the torus, LOS	$ au_{v,s}$	250^{+20}_{-10}
Viewing angle	i	$75_{-4}^{+8\circ}$	Viewing angle	i_s	79^{+7}_{-10} °
Inner radius	r_{in}	$0.28^{+0.01}_{-0.01} \text{ pc}$		$r_{in,s}$	$0.41^{+0.05}_{-0.02} \ \mathrm{pc}$
Outer radius	r_{out}	$5.1^{+0.4}_{-0.4} \text{ pc}$		$r_{out,s}$	$8.5^{+7.9}_{-0.7} { m pc}$
Height	H	$3.5^{+1.0}_{-1.3} \text{ pc}$		H_s	$4.2^{+0.5}_{-0.2} \text{ pc}$
Bolometric luminosity (erg s^{-1})	L_{bol}	$5.02^{+0.15}_{-0.19} imes 10^{44}$		$L_{bol,s}$	$1.11^{+0.28}_{-1.23}\times10^{44}$

Table 2.	CLUMPY	and	Smooth	torus	model	parameters.
----------	--------	-----	--------	-------	-------	-------------

Lopez-Rodriguez et al. (2018, ApJ, 859, 99)

NUCLEAR SED EMISSION: SED COVERAGE

We inferred the best CLUMPY torus model using different SED coverages.

- ⁻ 1-20 um: The full extend of the torus cannot be constrained.
- ⁻ 30-40 um: Turn-over of the torus emission occurs.

⁻ 20-500 um: Probe the full bulk of dust emission in the torus by accounting the warm/cold dust.

σ (°)	Y	N_0	q	$ au_v$	i (°)	\mathbf{r}_{out} (pc)	SED
20^{+5}_{-3}	13^{+4}_{-3}	11^{+2}_{-3}	$0.22_{-0.13}^{+0.20}$	28^{+10}_{-6}	75^{+4}_{-6}	$3.5^{+1.3}_{-0.9}$	$1-20 \ \mu m \ SED+MIR \ Spectroscopy$
31^{+20}_{-8}	19^{+1}_{-1}	5^{+3}_{-2}	$0.06\substack{+0.08\\-0.04}$	59^{+16}_{-13}	71^{+5}_{-3}	$5.5^{+0.4}_{-0.4}$	$1-20 \ \mu m \ SED+MIR \ Spectroscopy+ALMA$

AGN TORUS: DUST EMISSION DISTRIBUTION USING CLUMPY TORUS MODELS

1-20 um SED coverage underestimates the cold dust in the torus --> Torus is small and very compact, and the SED underestimates the FIR and sub-mm observations.

1-20 um + ALMA SED coverage overestimates the cold dust in the torus --> Torus is slightly bigger and has small angular width.

1-20 um SED coverage underestimates the cold dust in the torus --> Torus is small and very compact, and the SED underestimates the FIR and sub-mm observations.

1-20 um + ALMA SED coverage overestimates the cold dust in the torus --> Torus is slightly bigger and has small angular width.

1-20 um SED coverage underestimates the cold dust in the torus --> Torus is small and very compact, and the SED underestimates the FIR and sub-mm observations.

1-20 um + ALMA SED coverage overestimates the cold dust in the torus --> Torus is slightly bigger and has small angular width.

Lopez-Rodriguez et al. (2018, ApJ, 859, 99)

THE RESOLVED TORUS OF NGC 1068: ALMA OBSERVATIONS

Torus size ~ 12x5 pc Orientation of the torus ~ 110°

Highly inhomogeneous molecular torus

Inferred torus using CLUMPY torus models

Results:

- ⁻ The inferred torus size, dust distribution and dust emission is well described by the 1-432 um SED.
- ⁻ Dust distribution is best described by the 432 um observations

Wavelength (μ m)

^{0 20 40 60 80 100 120 140} Projected baseline length BL [m]

SUMMARY

- The torus is the cornerstone of the unification model of active galaxies.
 - The torus absorbs radiation from the active nucleus and re-emits it at IR wavelengths.
 - This structure has been extensively study in the 1-13 um (1500K-100K) and recently in the sub-mm range with ALMA.
 - The torus is thought to be clumpy, dusty and with sizes <10 pc. This structure is not resolved with current single-dish telescopes.
- Current studies lack of moderate resolution observations in the range of 30-70 um.
 - This wavelength range is thought to be where the peak emission of the torus occurs and where the warm/cold dust of the torus can be traced.
- We report 20-53 um imaging observations of NGC 1068 using FORCAST AND HAWC+ onboard SOFIA.
 - Star forming regions dominate at scales of 700 pc at >100 um.
 - Dust emission at scales > 10 pc in the polar direction dominates at 10 um.
 - The torus emission is isolated from these two regions and their peak is found to be in the 30-40 um range.
- Using CLUMPY torus models, we found that:
 - The 1-20 um range is not able to probe the full extent of the torus.
 - The morphology of the emission in the 1-20 um range shows an elongated morphology perpendicular to the cloud distribution.
 - The cloud distribution is characterized by observations in the sub-mm range.

