First detection of ¹³CH in the ISM

A. M. Jacob , K. M. Menten, H. Wiesemeyer, R. Güsten, F. Wyrowski
& B. Klein
Max Planck Institute for Radioastronomy, Bonn (A&A 640, A125, 2020)

Background Image: GLIMPSE/Spitzer IR image (Churchwell+06)

Carbon-12 (¹²C):

- Primary product of stellar nucleosynthesis
- He-burning via triple α -reaction

Isotopic abundance ratios

Carbon-13 (¹³C):

- Secondary product of stellar nucleosynthesis
- By-product of the CNO-cycle

Carbon-12 (¹²C):

- Primary product of stellar nucleosynthesis
- He-burning via triple α -reaction

Carbon-13 (¹³C):

- Secondary product of stellar nucleosynthesis
- By-product of the CNO-cycle

 $^{12}\text{C}/^{13}\text{C}$ isotopic ratio \Rightarrow primary/secondary processing

Essential diagnostic of the history of Galactic nucleosynthesis and chemical enrichment

¹²C/¹³C model predictions (e.g. Tosi 1982)

- Increase with R_{GC}
- Star-formation rates higher toward the Galactic centre

Models and observations

12 C/ 13 C model predictions

(e.g. Tosi 1982)

- Increase with R_{GC}
- Star-formation rates higher toward the Galactic centre

Observations

- Reveals a positive gradient
- H₂CO (Henkel et al. 1985, Yan et al. 2019)

¹²C/¹³C model predictions (e.g. Tosi 1982)

- Increase with R_{GC}
- Star-formation rates higher toward the Galactic centre

Observations

- Reveals a positive gradient
- H₂CO (Henkel et al. 1985, Yan et al. 2019)
- CO, C¹⁸O (Langer & Penzias 1990,Wouterloot & Brand 1996, Giannetti et al. 2014)

Challenges in interpretation

H_2CO ; Henkel et al. 1982

Systematic variations and scatter amongst molecules

CO; Langer & Penzias 1990

Why are there inconsistencies?

- Observational effects
- Isotope selective processes

JACOB/MPIfR

Chemical fractionation

- Due to small differences in binding energy
 - \Rightarrow small differences in zero-point energies
 - \Rightarrow differences in mass

Selective photo-dissociation

- UV-dominant regions (diffuse/translucent clouds)
- Decreases ¹³C

• For example:

 $^{13}\mathrm{C}^+ + \mathrm{CO} \rightarrow \mathrm{C}^+ + ^{13}\mathrm{CO}$ + 35 K

Enriches ¹³C isotope

Extend of fractionation varies in different species

• Weaker self-shielding of ¹³C isotope

The promise of $CH^+(?)$

- C^+ \xrightarrow{H} CH⁺; (ΔE = 4640 K) \Rightarrow Unaffected by fractionation $H_2 + h\nu$
 - CH⁺ 4232 Å (Ritchey et al. 2011)

- - CH⁺ 830 GHz (Godard et al. . 2012)

 \Rightarrow Limited to nearby (<7 kpc), bright (V < 10 mag) sources

JACOB/MPIfR

Aim

- Using different species \Rightarrow can reveal systematics in ${}^{12}\text{C}/{}^{13}\text{C}$
- But optical depth effects, fractionation, selective photo-dissociation ⇒ measurement biases

What does the underlying ${}^{12}C/{}^{13}C$ look like?

• One of the first molecules to be detected in the ISM

(Dunham 1937)

 Early product of chemical network
 ⇒ Building block of larger molecules

$$\begin{array}{ccc} \mathbf{C}^+ & \xrightarrow{\mathrm{H}_2} & \mathrm{CH}_2^+ & \xrightarrow{\mathrm{H}_2} & \mathrm{CH}_3^+ & \xrightarrow{\mathrm{e}^-} & \mathbf{CH} \\ \\ \mathbf{C}^+ & \xrightarrow{\mathrm{H}} & \mathbf{CH}^+ & \xrightarrow{\mathrm{H}} & \mathrm{CH}_2^+ & \xrightarrow{\mathrm{e}^-} & \mathbf{CH} \\ & & \mathbf{H}_2 + h\nu & \mathbf{CH}^+ & \xrightarrow{\mathrm{H}} & \mathbf{CH}_2^+ & \xrightarrow{\mathrm{e}^-} & \mathbf{CH} \\ \end{array}$$
(Turbulence driven chemistry)

CH lines are almost ALWAYS optically thin! At all wavelengths (optical, FIR, submm and radio)!

Problem: ¹³CH has not yet been detected in the ISM

Energy level diagram

(Note: Energy levels are not to scale)

• CH 3.3 GHz ⇒ anomalous excitation

Difficult to interpret

• CH 533/537 GHz

Complex spectra (ems+abs), standing waves, line contamination

JACOB/MPIfR

Observational setup

German REceiver for Astronomy at Terahertz frequencies

Credits: Deutsches SOFIA Institut

- High resolution
 - \rightarrow Spectral resolution of 244 kHz
- Six frequency channels 0.49-4.74 THz
- Multi-pixel, heterodyne spectrometer
- Available in two configurations
 LFA + HFA

Greatis. Deutsches SOFIA Institut				4G + HFA	
	Channele		Frequency	Trec Double	FWHM
(Risacher et al. 2018)	Channels		[THz]	Sideband [K]	[``]
	upGREAT	HFA	4.7447	1250	6.3
		LFA-H	1.835-2.007	1000	14.1
		LFA-V	1.835-2.007	1000	14.1
			2.060-2.065		
		4G4	2.480-2.620	3300	10.5
		4G3	1.240-1.395	1100	20
			1.425–1.525		
Duran et. al 2020 (submitted IEEE THz)	4GREAT	4G2	0.850-0.975	>600	27
			0.990-1.085		
		4G1	0.495-0.550	200	50
			0.563-0.630	300	52

CH $(N, J = 2, 3/2 \rightarrow 1, 1/2)$

Frequencies from Davidson et al.

2001

Parity	Transition	Frequency	A _E
	F' - F"	[GHz]	10 ⁻² X [S ⁻¹]
- → +	1 - 1	2006.74892	1.117
	1-0	2006.76263	2.234
	2-1	2006.79912	3.351
+	1 - 1	2010.73859	1.128
	1-0	2010.81046	2.257
	2-1	2010.81192	3.385

¹³CH observations

 Observation strategy: Strong continuum sources Cover a range of R_{GC}

Frequencies from Davidson et al.

2004

Sideband deconvolution

Sideband deconvolution \Rightarrow

For disentangling sight line features from contamination

- Three different IF settings (e.g. IF = 1.2, 1.4 and 1.6 GHz)
- DSB spectrum

$$\phi(\upsilon)_i = \phi_{sig}(\upsilon) + \phi_{img}(\upsilon_i - \upsilon)$$

Average

$$\begin{split} \phi(\upsilon)_{\text{avg}} &= \\ \phi_{\text{sig}}(\upsilon) + \sum_{i=1}^{3} \phi_{\text{img}}(\upsilon_i - \upsilon)/3 \end{split}$$

Residuals

$$\phi(v)_{1-2}, \phi(v)_{1-3}$$

Average of residuals

$$(\phi(v)_{1-2} + \phi(v)_{1-3})/2$$

• Resultant spectrum = Average - Average of residuals

Sideband deconvolution

Sideband deconvolution \Rightarrow

For disentangling sight line features from contamination

• Three different IF settings (e.g. IF = 1.2, 1.4 and 1.6 GHz)

Results toward other sources I

Results toward other sources II

- Fit using Wiener filter deconvolution algorithm (Jacob et al. 2019)
- Deconvolves hyperfine structure from observed spectrum in Fourier space
 - \Rightarrow Reveal underlying "original" spectrum

 From the absorption spectra we can directly derive column densities

Source	N(¹³ CH)	N(¹² CH)	¹² C/ ¹³ C		R _{gc}
	[10 ¹³ cm ⁻²]	[1013 cm-2]	СН	CN	[kpc]
SgrB2(M)	4.61	73.02	15.8	>12	0.1
W51E	1.77	66.36	37.5	35	6.3
G34.26+0.15	0.2	9.38	47	28	7
W49(N)	0.68	22.87	33.6	44	7.8
W3(OH)	<0.11	6.58	>58	63	10

- ${}^{12}\text{C}/{}^{13}\text{C}$ similar for both CH and CN (Milam et al. 2005)
- $CH + N \rightarrow CN + H$
- Discrepancy for G34.26+0.15 \Rightarrow ¹²CN shows non-LTE effects
- $^{12}{\rm C}/^{13}{\rm C}$ from complex organic molecules (COMs) (Halfen et al. 2017) average value for GC $\sim 24\pm9$

 \Rightarrow similarities within errors \Rightarrow $^{13}{\rm C}$ substitution derives from early stage molecules like CH and CN

Revised ¹²C/¹³C Galactic gradient

Summary

- First detection of ¹³CH in the ISM
- Smaller uncertainties in CH column densities
 - \Rightarrow Smaller errors in the overall fit
 - \Rightarrow New constraints on Galactic chemical evolution models
- CH relatively unaffected by fractionation effects
 - $\Rightarrow \text{low } A_{\text{v}} \text{ regions}$
 - \Rightarrow Turbulence/ UV-driven chemistry
- ¹³C substitution in CH \Rightarrow Important in chemistry

Future prospects

- Promote laboratory studies of other ¹³CH transitions
- Extend the search for ¹³CH in other sources and hunt for other ¹³CH transitions

Thank you

Backup: Wiener filter algorithm (Jacob et al. 2019)

