Accretion in the Inner Regions of Massive Circumstellar Disks: AFGL 2136 and AFGL 2591

THE ASTROPHYSICAL JOURNAL, 900:104 (35pp), 2020 September 10 © 2020. The American Astronomical Society. All rights reserved.

https://doi.org/10.3847/1538-4357/abab05

High-resolution Infrared Spectroscopy of Hot Molecular Gas in AFGL 2591 and AFGL 2136: Accretion in the Inner Regions of Disks around Massive Young Stellar Objects

Andrew G. Barr¹, Adwin Boogert^{2,10}, Curtis N. DeWitt³, Edward Montiel³, Matthew J. Richter⁴, John H. Lacy⁵, David A. Neufeld⁶, Nick Indriolo⁷, Yvonne Pendleton⁸, Jean Chiar⁹, and Alexander G. G. M. Tielens¹

High Mass Star Formation

Low Mass Star Formation

Hot Core Phase

- Intermediate objects in high mass star formation
- Complex environment with evaporation of ice mantles
- Chemically rich objects
- Structure and chemistry well studied at sub-mm wavelengths. Not so much for infrared: CH₄ & C₂H₂

Disks in Massive Star Formation

Disks in Massive Star Formation

CO emission

Disks in Massive Star Formation

-ve temperature gradient outward

+ve temperature gradient outward

d'Alessio et al. (1998)

Absorption Spectroscopy

Absorption Spectroscopy

Ro-vibrational Spectra

Ro-vibrational Spectra

Observations

- Full spectral survey of 4.5-13 μ m region at **R=50,000** (6kms⁻¹)
- 2 Hot cores AFGL 2591 and AFGL 2136
 - * $4.5 5.2 \mu m iSHELL/IRTF$
 - * 6.7 8.0 μm EXES/SOFIA
 - * $8.0 13.3 \ \mu m$ TEXES on GEMINI & IRTF
 - ❖ 3 µm iSHELL/IRTF

Results: AFGL 2591

Results: AFGL 2136

AFGL 2136 with ALMA; ang res = 20x15 mas

- We propose this scenario for *both* AFGL 2136 and AFGL 2591
- In AFGL 2591 size of absorbing region constrained to < 130 AU (Barr et al. 2018)
- Gieser et al. (2019) confirmed this with temperature modelling of CH₃CN suggesting a radius of 50 AU from the star

Barr et al. (2020)

Barr et al. (2020)

Abundance Calculation

$$A_0\simeq \frac{\eta_{
u}}{1+\sqrt{3}\,a/b}.$$

$$\eta_0 = \frac{\kappa_L(\nu = \nu_0)}{\kappa_c} = \frac{A_{ul}\lambda^3}{8\pi\sqrt{2\pi}\sigma_v} \frac{g_u}{g_l} \frac{N_l}{\sigma_c N_H} \left(1 - \frac{g_l N_u}{g_u N_l}\right),$$

$$\frac{W}{2Y\Delta\nu}=\eta_0\frac{\sqrt{\pi}}{2},$$

$$X_0 = \frac{h\nu_0/kT_0}{1 - e^{-h\nu_0/kT_0}}$$

Blue - LTE model Red - Fit to data T = 670 K N = 2.4e17 cm-2

- 1) The size of the continuum gets larger with wavelength
- 2) The temperature of the gas plays a role in the chemistry therefore if the temperature is not high enough no HCN/C₂H₂ will be formed
- 3) Non HCN/C₂H₂ containing parts of the disk will not contribute to the absorption line, but *will* contribute to the continuum emission there is a trade off between the two

	AFGL 2591	AFGL 2136
T (K)	671 +/- 118	592 +/- 21
X _H (HCN) (x10 ⁻⁵)	2.0 +/- 1.0	1.6 +/- 0.8

	AFGL 2591	AFGL 2136
T (K)	598 +/- 51	618 +/- 176
X _H (C ₂ H ₂) (x10 ⁻⁶)	1.8 +/1 0.2	7.0 +/- 0.8

	AFGL 2591	AFGL 2136
T (K)	713 +/- 59	418 +/- 23
X _H (HCN) (x10 ⁻⁶)	1.5 +/- 0.3	1.2 +/- 0.1

Emission Lines in L-band

Other Hot Cores

- Absorption lines seen towards other luminous hot cores (>10⁵ L_☉)
- NGC 7538 IRS1, MonR2 IRS 3, W3 IRS5, Orion IRc2
- These may be characteristic of O-type stellar disks in most early embedded phase where UV flux from star cannot irradiate disk
- Orion IRc2 shows OPR<3 for C₂H₂

Conclusions

- Absorption lines in the MIR are a further signpost of disk accretion towards embedded high mass protostars
- ❖ OPR < 3 is evidence for a disk photosphere
- Hot corinos may also reveal MIR absorption lines which would suggest the presence of actively accreting embedded disks
- Similarity in chemistry implies that the formation of massive stars may well be a scaled up version of low mass star formation
- ❖ Lower detection rate of H₂O and simple organics in Herbig disks is likely an observational effect not a chemical effect

James Webb Space Telescope

- SOFIA can guide JWST/MIRI observations which will lack high spectral resolution
- JWST can clarify whether the MIR spectrum of hot corinos has absorption lines

Conclusions

- Absorption lines are known to be associated with disks
- These imply the presence of a viscously heated accretion disk
- Line profiles and high temperatures of absorption lines imply that the absorption arises in clumps in the disk
- Using stellar atmosphere theory we derive abundances of the detected species w.r.t H, which are high (10-6)
- Temperatures and abundances are consistent with chemical models of TTauri and Herbig disks of the inner 1 or 5 AU respectively
- ❖ There is evidence for abundance gradients of HCN and C₂H₂