

Grain alignment and polarization in molecular cloud

SOFIA Tele-talk, Dec. 16, 2020

Le Ngoc **Tram** - SOFIA Postdoc Fellow Universities Space Research Association, Nasa Ames Research Center, CA, USA

> on perhaps of **Collaborations**

- Thiem Hoang (KASI, Korea) *
- ✤ Hyeseung Lee (KASI, Korea)
- ✤ William T. Reach (USRA-SOFIA, USA)
- Archana Soam (USRA-SOFIA, USA) **
- Simon Coudé (USRA-SOFIA, USA) **
- Enrique Lopez-Rodriguez (USRA-SOFIA, USA) Nguyen Bich Ngoc (GUST, Vietnam)
- David Chuss (Villanova, USA) **

- Joseph Michail (Northwestern University, USA)
- Fabio Santos (MPIfA, Heidelberg, Germany)
- ✤ Antoine Gusdorf (LPENS, ENS, France)
- Pierre Lesaffre (LPENS, ENS, France)
- Pham Ngoc Diep (VNSC, Vietnam)

Contents1-Introductions and motivations2-Dustpol model3-Polarization hole4-Conclusion2.1- Applications2.2- Limitations3.1- Theoretical cal.3.2- Possible app.

Contents

- 1. Introductions and motivations
- 2. Grain alignment and disruption by RAdiative Torque (RAT + RATD) Introduce: Dustpol numerical model
 - 2.1 Applications to SOFIA/HAWC+ observations
 - 2.2 Limitations and perspectives
- 3. Implication to polarization hole
 - 3.1 Theoretical calculations
 - 3.2 Possible applications to SOFIA/HAWC+ observations
- 4. Conclusion

Contents 1-Introductions and motivations

2-Dustpol model 2.1-Applications 2.2-Limitations **3-Polarization hole** 3.1- Theoretical cal. 3.2- Possible app.

1. Introductions and motivations

- Magnetic field (B-field) is believed to play a substantial role in the star-formation processes (Crutcher 2012)
- Direct measurement of B-field is a difficult issue
 - \rightarrow Indirect methods:
 - <u>the dust polarization</u> (SOFIA/HAWC+ and others)
 - the Zeeman effect
 - the Goldreich-Kylafis effect
 - the Faraday effect
 - the synchrotron emission
- ❖ Radiative torque (RAT) alignment theory is a popular theory describing grain alignment and polarization (Lazarian & Hoang 2007; Andersson et al. 2015)
 → implemented to POLARIS code (Reissl & Bauer)
- One of the key predictions of the RAT theory: the polarization degree correlates with the intensity of the radiation field (or equivalently dust temperature, see e.g., Lee et al. 2020)
- * Observational Question: p increases and then decreases as T_d increases?

(RAT prediction)

(Opposite to RAT prediction)

1. Introductions and motivations

- Observations report the anti-correlation of p(%) to $N_{\rm H}$
- \rightarrow Loss of grain alignment toward dense medium (Whittet et al. 2008)
- → Turbulent structure of magnetic field within the scale of the beam size (e.g., Jones & Whittet 2015; Planck Collaboration et al. 2015).

2-Dustpol model 3-Polarization hole 4-Conclusion 2.1- Applications 2.2- Limitations 3.1- Theoretical cal. 3.2- Possible app.

40

35

30

25 connts 20 Counts

15

10

1. Introductions and motivations

Oph-A observations

2D histogram of the dust polarization degree and dust temperature for 89 μ m (left panel) and 154 μ m (right panel). The gray lines show the binning weighted-mean of the data and the error bars represent the standard deviation within the bin. The black dashed lines show the best t of the piecewise linear function to the data.

- p increases and decreases with Td •
- *p* decreases toward + lower gas density • + higher dust temperature
 - → Loss of grain alignment toward dense medium

LIC maps of the inferred magnetic field

B-field is "well ordered" in Oph-A ٠ \rightarrow <u>Turbulent of B-field within the scale</u> of the beam size ???

2. Radiative torque disruption (RATD) mechanism (Hoang, Tram et al. 2019)

Large grains exposed in a strong radiation field
 (or high dust temperature in equivalent) can be spin-up very fast by RAT.

 $\omega_{\text{RAT}} = 7.6 \times 10^{10} \gamma a_{-5}^{1.7} \bar{\lambda}_{0.5}^{-1.7} U_6^{1/3}$ rad s⁻¹

Note: rotating grain is damped by (Lee et al. 2020) • gas collision $\tau_{gas} \sim a n_{\rm H}^{-1} T_{gas}^{-1}$ • IR re-emission $\tau_{em} \sim \frac{a^3}{Q_{abs}} U^{-1} T_{\rm d}^2$

- The induced centrifugal stress $S = \rho \omega^2 a^2 / 4 \Rightarrow \omega_{\text{crit}} = \frac{2}{a} \left(\frac{S_{\text{max}}}{\rho}\right)^{1/2}$ rad s⁻¹
- ❖ For sufficiently high rotation rate, the induced centrifugal force can exceed the binding force (S_{max}) that holds the grain's structure
 → disrupts the large grain into smaller species.
 - $S_{\text{max}} = 10^6 \text{-} 10^8 \text{ erg cm}^{-3}$: composite structure (Hoang 2019)
 - $S_{\text{max}} = 10^9 10^{10} \text{ erg cm}^{-3}$: compact structure (Draine & Salpeter 1979; Burke & Silk 1974)
 - $S_{\text{max}} = 10^{11} \text{ erg cm}^{-3}$: ideal materials (i.e., diamond, Hoang et al. 2019)

Hoang, Tram et al. 2019 Nature Astronomy

2. Dust Polarization (Dustpol) model (Lee et al. 2020)

- DUSTPOL models
 - the starlight polarization and polarized thermal dust emission
 - simultaneously consider RAT + RATD

22

20

 $T_{\rm d}$ [K]

24

2-Dustpol model 2.1- Applications 2.2- Limitations

3-Polarization hole 4-Co

4-Conclusion

2.1 Applications to Oph-A (Tram, Hoang et al. 2020b)

Numerical setup

3.1- Theoretical cal. 3.2- Possible app.

- ★ T_d < T_{d,threshold}: weak radiation (low-T_d) and dense gas (high N_H)
 → damping is substantial → no RATD → p(%) increases as T_d increases
- ★ $T_d > T_{d,threshold}$: strong radiation (high- T_d) and less dense gas (low N_H) → damping is inefficient → RATD → p(%) decreases as T_d increases
- ✤ More compact grains, harder to be disrupted

2.1 Applications to Oph-A (Tram, Hoang et al. 2020b)

Interpret SOFIA/HAWC+ observations

Table 1. χ^2 of the models with a single aligned silicate grains (Figure 11) and a combination of aligned carbonaceous and silicate grains (Figure 12) to observations computed by

$$\begin{split} \chi^2 &= \tfrac{1}{N} \sum_i^N (P_{\rm obs}^i - P_{\rm mod})^2 / P_{\rm obs}^i \\ \text{with } N \text{ the number of data points} \end{split}$$

	$\chi^2(89\mu\mathrm{m},f_{\mathrm{max}}=1)$		$\chi^2(154\mu{\rm m},f_{\rm max}=0.35)$	
β	sil grain	car+sil grain	sil grain	car+sil grain
-3.5	4.99	3.41	10.62	7.40
-3.6	3.45	2.65	7.60	5.69
-3.7	2.36	2.03	5.12	4.15
-3.8	1.68	1.59	3.25	2.86
-3.9	1.37	1.35	1.98	1.89
-4.0	1.34	1.31	1.26	1.28
-4.1	1.53	1.44	1.01	1.02
-4.2	1.86	1.71	1.09	1.04
-4.3	2.26	2.08	1.41	1.28
-4.4	2.71	2.50	1.84	1.67
-4.5	3.15	2.94	2.33	2.12

- ✤ Assuming that all dust grains follow a power-law size distribution.
- Our modeling results could successfully reproduce both the rising and declining trends of the observational data.
- ✤ We show that the alignment of only silicate grains or a mixture of silicate-carbon grains within a composite structure can reproduce the observational trends
- ✤ Grains in Oph-A cloud have a composite structure
- ★ The grain-size distribution has steeper slope $\beta < -3.5$ (ISM).

2-Dustpol model 2.1- Applications

3-Polarization hole

4-Conclusion

2.1 Applications to 30 Dor (Tram et al in prep)

2.2- Limitations 3.1- Theoretical cal. 3.2- Possible app.

> Toward R136 Toward R136

Le Ngoc Tram – SOFIA-tele-talk

2.2 Limitations and perspectives of DUSTPOL code

- ↔ DUSTPOL's input parameters are the local $n_{\rm H}$ and the local $T_{\rm d}$
 - first controls the damping process of the rotating grains,
 its value is derived from a spherical model
 - second denes the angular rotational rate of grains.
 - its value is adopted from observations
 (projection effect -- the actual value could be higher than these)
- ✤ B-field is assumed to be uniform
 - In realistic, the variation of B-field along the l.o.s could reduce p(%) but not change the p(%)- T_d trend.
- ✤ DUSTPOL's input parameters are the local parameters.
 - prescription will be easy to incorporate into more elaborate models that have better physical treatments for the gas and dust properties
 - □ 3D radiative dust modeling codes (e.g., Dullemond et al. 2012; Liseau et al. 2015)
- ✤ Variation of B-field is being updated into the new version of DUSTPOL code

2-Dustpol model 3-Polarization hole 2.1- Applications 2.2- Limitations 3.1- Theoretical cal. 3.2- Possible app.

Polarization hole 3.

Lee et al. 2020

 $\omega_{\rm RAT}(a_{\rm align}) = 3\omega_{\rm th}(a_{\rm align})$ (Hoang & Lazarian 2016) small a_{align} : "perfect" alignment large a_{align} : "unperfect" alignment $a_{\text{align}} > a_{\text{max}}$: "no" alignment

Note: max(f(a)) < 1 for a mixture model of silicate + carbon grains (Draine & Fraisse 2009; Guillet et al. 2018)

4-Conclusion

3.1 Theoretical calculations (Hoang, Tram et al., submitted to ApJ)

MC without an embedded source: Starless core-like

- Analytical results are in excellent agreement with numerical results.
- The alignment size increases gradually with $A_{\rm V}$ and $n_{\rm H}$.

□ $n_{\rm H} = 10^4$ cm⁻³, standard grains ($a < 0.3 \ \mu$ m) can be aligned upto $A_{\rm V} \sim 10$ □ $n_{\rm H} > 10^5$ cm⁻³, only large grains of $a > 0.5 \ \mu$ m can be aligned at $A_{\rm V} > 10$

- The degree of dust polarization by dichroic extinction is expected to decrease with increasing $A_{\rm V}$
- Grain completely loss alignment: $a_{\text{align}} > a_{\text{max}}$

See Hoang, Tram et al. 2020 for the detailed calculations

MC

ISM

3.1 Theoretical calculations (Hoang, Tram et al., submitted to ApJ)

MC with an embedded source: protostar-like

- Analytical results (solid lines) are in good agreement with numerical results (filled circles)
 - Alignment size is lower for more luminous sources.
- In the envelope $(A_{V,*} > A_{V,c})$:
 - \Box the alignment size decreases gradually with decreasing A_V (increasing A_V)
 - only large grains can be aligned because of the rapid increase in the gas density as $\sim r^{-p}$
- In the central region ($A_{V,*} < A_{V,c}$): n_H =const, the alignment size decreases rapidly with $A_{V,*}$ due to increase of the radiation intensity.
- \rightarrow if the grain size distribution is constant, the polarization of thermal dust emission would increase toward the central protostar producing a slope = 0
- \rightarrow we should not see the polarization hole!
- Grains are rotationally disrupted by RATs in the central region. ٠
- The removal of the largest grains by RATD is predicted to reduce p(%) at long ٠ wavelength (Lee et al. 2020; Tram, Hoang et al. 2020).
 - $\rightarrow p(\%)$ should decrease toward the protostar, and one expects the slope $\sim 0^{-1}$
 - \rightarrow produce polarization hole

100

2-Dustpol model 2.1- Applications 2.2- Limitations 3.1- Theoretical cal. 3.2- Possible app.

3-Polarization hole

4-Conclusion

3.1 Theoretical calculations (Hoang, Tram et al., submitted to ApJ)

MC with an embedded source: protostar-like

(1) The degree of dust polarization by dichroic extinction is expected to decrease with increasing AV

- \rightarrow (2) Grain completely loss alignment
 - \rightarrow (3) Radiation from the source make p(%) increase
 - \rightarrow (4) Disruption effect causes the slope <0

- Loss-alignment zone: shaded regions
- A_{Vloss} depends on the a_{max} and radiation field (internal + external)

3.2 Possible SOFIA/HAWC+ applications

✤ Bok globule B335 (Zielinski, Wolf and Brunngräber 2020)

Serpens South observations (Pillai et al. 2020 Nature Astronomy)

- ISRF alone cannot explain the drop in the p(%)
- Central stellar radiation causes an increase in p(%) towards the center \rightarrow contradicting the polarization holes
- ISRF + star leads to a similar slope
- Stronger RAT efficiency \rightarrow higher p(%)
- → POLARIS model could explain the outer region but cannot explain the decrease in p(%) towards the center

protostar

RAT+no RATD

RAT+RATD

slope=0

Le Ngoc Tram – SOFIA-tele-talk

Couldn't change any conclusions in Pillai et al. 202015It is likely a perfect observational data to test our theory

10²

12/15/20

4. Conclusion

- Large grains exposed to a strong radiation field can be disrupted into smaller species via the RATD mechanism
- ✤ RATD mechanism constrains the upper limit for the grain size distribution
- ♦ RATD efficiency depends on $(n_{\rm H}, T_{\rm d}, U, S_{\rm max})$
- In molecular cloud hosted by a strong radiation source (i.e., a massive star or a cluster of it)
 - joint effect of RAT + RATD reproduces successful the observational p(%) T_d trend
 - suggests a composite grain structure
 - the power-index of size distribution steeper than the standard MRN distribution (i.e., -3.5)
 - need to be tested in various astrophysical environments/conditions
- ✤ RATD could not tell us which sizes are produced via the disruption
 - multiple polarimetric data would help
 - coupling among facilities at different wavelength (SOFIA, JCMT, BLASTPol, APEX) is very important
- ✤ Grain alignment and disruption by RAT can explain the polarization hole effect
 - p(%)- A_V trend is being developed and implemented to DUSTPOL code
 - need to be tested observationally
- ✤ Input parameters are the local parameters
 - prescription will be easy to incorporate into more elaborate models (e.g., POLARIS)
- ✤ B-field is assumed to be uniform
 - its variation along l.o.s is being considered in the future work
- * RATD can be responsible for other long-standing questions in Astrophysics (see Hoang 2020 for review)

Thank you very much for your time – Xin cảm ơn!

