Mid-IR imaging and spectroscopy with FORCAST

The galactic center with FORCAST (NASA/DLR/USRA/DSI/FORCAST Team/Lau et al. 2013)

Faint Object infraRed CAmera for the SOFIA Telescope

- 2-channel mid-IR camera and grism spectrometer
- 1st Gen Instrument
- PI T. Herter (Cornell)
- Wide field (3.4' x 3.2' FOV) dual channel 5-40 μm camera and spectrograph
- SWC Si:As BIB 256x256 array for 5-25 μm, 0.79"x0.75"pix, rebinned to 0.768" square
- LWC Si:Sb BIB 256x256 array for 25-40 μm, 0.79"x0.75"pix, rebinned to 0.768" square
- 4 Grisms + 2 long slits provide low resolution (R~70-300) spectroscopy over 5-40 μm

2018 Community Days Workshops

Schematics

2018 Community Days Workshops

USRA

Filters and grisms

Filter Parameters			
SWC Filters		LWC Filters	
λ _{eff} (μm)	Δλ (μm)	λ _{eff} (μm)	Δλ (μm)
5.4	0.16	24.2	2.9
5.6	0.08	31.5	5.7
6.4	0.14	33.6	1.9
6.6	0.24	34.8	3.8
7.7	0.47	37.1	3.3
8.8	0.41		
11.1	0.95		
11.2	2.7	A subset o	f thoso will
11.3	0.24	be chosen each cycle as the nominal set.	each cycle
11.8	0.74		minal set.
19.7	5.5		
25.4	1.86		

Grism Details			
Grism	Coverage (µm)	R (λ/Δλ)ª	
G063	4.9-8.0	1204/180	
G111	8.4–13.7	130º/260	
G227	17.6–27.7	110/120	
G329	28.7–37.1	160/170 ^b	

2018 Community Days Workshops

USRA

Range and continuum sensitivity

Spectral features of interest

2018 Community Days Workshops

NASA

USRA

ĎSI

Filters

The dichroic is designed to transmit light at wavelengths greater than 25 μ m, and reflect light less than 25 μ m.

2018 Community Days Workshops

FORCAST Filter Profiles

SOFIA: 41000 ft, 7.3 μm PWV, 45° ZAMauna Kea: 13800 ft, 3.4 mm PWV, 45° ZA

2018 Community Days Workshops

Filters and dichroic

- Dual channel mode allows simultaneous imaging at two wavelengths
- However, there is decreased throughput compared to single channel mode

2018 Community Days Workshops

FORCAST Imaging Resolution

For comparison, Spitzer resolution of ~ 6" @ 24µm

2018 Community Days Workshops

Imaging Sensitivity

- S/N=4 in 900s, 41000 feet, single channel mode; larger limiting fluxes with dichroic
- Altitude/water vapor affect sensitivity more in the LWC
- In preparing your FORCAST observations, you can use SITE, the online integration time estimator

2018 Community Days Workshops

USRA

FORCAST grism design overview: layout

2018 Community Days Workshops

USRA

Slits in existing aperture wheel

Grism spectral formats

2018 Community Days Workshops

NASA

USRA

Spectroscopic Sensitivity

- S/N=4 in 900s, 41000 feet, single channel mode only
- Altitude/water vapor affect sensitivity more in the LWC
- In preparing your FORCAST observations, you can use SITE, the online integration time estimator

2018 Community Days Workshops

Chop/Nod Technique

- MIR observations are completely background (sky+telescope+instrument) limited
 - \circ Background can be >10⁶ times brighter than most sources
 - Detector wells can fill in 1-100 msec
- MIR background varies rapidly (order of less than a few sec)
- To subtract majority of the background the secondary is tilted between on-source and off-source positions (chopping) at a rapid rate (~few Hz)
- However, chopping introduces small additional offsets due to the different optical paths for the beams in the two chop positions
- To remove background offset, telescope is moved to another position (nodding) and the chop is repeated
 Nods on a timescale of ~30 sec,
- The two images from the chop positions are subtracted, and the two resulting chop-subtracted images from the two nod positions are subtracted
 - This double-differencing removes all background contributions
- One must ALWAYS chop and nod for FORCAST observations

Chopping & Nodding

Chop Nod Animation

Nod Position A Plus Beam

Source+Sky+Tel₊ -(Sky+Tel_)

Nod_Match_Chop (Symmetric Chop) Mode:

Nod A

Nod B

2018 Community Days Workshops

Grism Observing Modes: NMC

2018 Community Days Workshops

USRA

Grism Observing Modes: CAS, NAS

2018 Community Days Workshops

Pointed observations & mapping in extended sources

2018 Community Days Workshops

NASA

USRA

FORCAST Exposure Time Calculator

FORCAST ETC found on the DCS web pages: Imaging: https://dcs.sofia.usra.edu/proposalDevelopment/SITE/index.jsp Grisms: https://forcast.sofia.usra.edu/cgi-bin/forcast/forcast_grisms_calc.cgi

2018 Community Days Workshops

FORCAST Exposure Time Calculator

FORCAST Grism Calculator Output

Input Parameters	
Mode:	Signal-to-Noise
Grism:	1
Slit:	4.7 arcsec
Source flux :	1.499e-13 W/m2/micron at 10 microns
Source blackbody temperature:	1500 K
Total exposure time:	60 sec

View output data file

160

140

120

100

80

60

40

20

5

5.5

6

6.5

Signal-to-Noise

Plot of Signal-to-Noise as a function of Wavelength

Slit size = 4.700 arcsec Resolution = 90.0 Single frame exposure time = 0.059570 sec Frame Rate = 16.787 Hz Number of Coadds -1007.00000 Total Exposure Time - 60.0000000 sec Input flux : 0.1499E-12 W/m2/micron at 10.000 microns

Wavelength (microns)	FWHM (arcsec)	Fractional Slit Transmission
5.000	3.51	0.75
6.350	3.53	0.74
7.700	3.54	0.74

2018 Community Days Workshops

USRA

FORCAST in USPOT

	FORCAST_Imaging [AOR	D: N/A]	
Uniq	ue AOR Label: FORCAST_Imaging-0000		FORCAST Imaging
	Target: None Spe	tified	
	New Target Modify Target	Target List	IMAGING_DUAL
	Observing Condition & Acquis	ition / Tracking	IMAGING_SWC
* Exposure	e Time (sec) 60.000	* Config IMAGING_LWC +	IMAGING_LWC
Cycles Min Contig	Juous Exp Time (sec) 0.000	* SWC NONE + * LWC FOR_F113 +	
Observatio	n Order 1	Chop / Nod	Nod Matab Chara
Dither Patt	- Dither Offset	* Chop/Nod Style Nod Match Chop 💠	Nod Match Chop
None A point	Dither Coordinate Sky \$	Chop Type Sym 💠	C2NIC2
S point	DitherOffset (arcsec) 10.000	Chop Throw (arcsec) 60.000	CZINCZ
O 9 point	ExpTimePerDither (sec) 21.000	Chop Angle Coordinate Array 💠	
Custom		Set Chop Angle Ranges	Array
Number	Offset East/Row/Perpen Offset North/Column/Pa	Chop Angle (deg) 30.000	Sky
		Nod Throw (arcsec) 60.000	
		Nod Angle Coordinate Array 🗘	
		Nod Angle (deg) 210.000	FTC provided on-source integration
		Example Rotation Angle (deg) 0.000	
		(** = Advanced) (* = required for Phase I)	time to achieve a specific S/N.
	Observation Est Comments	Proposal Info	Enter on-source integration time in
(?)		Cancel Apply OK	USPOT. Then USPOT will add
			overneads.

2018 Community Days Workshops

USRA

FORCAST in USPOT

FORCAST_Grism [AOR ID: N/A] Unique AOR Label: FORCAST_Crism-0000	FORCAST Grism Spectroscopy
Target: None Specified New Target Modify Target Target List Observing Condition & Acquisition / Tracking * Exposure Time (sec) 60.000 * Instrument Configuration CRISM_LWC \$ 	GRISM_SWC GRISM_LWC
Cycles 1 Min Contiguous Exp Time (sec) 0.000 Observation Order 1 IR Source Type Point Source ‡ Dither Patt Other Offset Other Coordinate Array ‡ Dither Offset Dither Offset (arcsec) Dither Offset Chop / Nod Spoint Spoint Spoint Stan Size (arcsec) Scan Size (arcsec) 0.000 Set Chop Angle Coordinate Array ‡ Set Chop Angle Ranges Set Chop Angle Ranges	Nod Match Chop Nod Perp Chop CAS Nod Perp Chop NAS NXCAC SLITSCAN
Number Offset Along Slit(*) Offset Perp Slit(*) Chop Angle (deg) 30.000 Nod Throw (arcsec) 60.000 Nod Angle Coordinate Array * Nod Angle (deg) 210.000 (** = Advanced) (* = required for Phase I) Observation Est Comments Proposal Info (*	Array Sky

2018 Community Days Workshops

DSI

FORCAST in USPOT

FORCAST Data Products

- Once flight series is complete, data are pipelined, flux calibrated, and archived in the SOFIA Data Cycle System (<u>https://dcs.sofia.usra.edu</u>), usually within a month.
- GOs are then notified via email and provided links for data retrieval.
- Proprietary period is typically 1 year from completion of pipeline processing and calibration.
- Pipeline processing removes instrumental artifacts and sky/telescope background.
- Telluric correction is applied using a grid of ATRAN models.
- Flux calibration is applied using response tables/curves derived from observations of standard sources (stars/asteroids).
 Flux calibration uncertainty: 5 10%
- See FORCAST Data Handbook and Cookbook Recipes for more information:
 - o https://sofia.usra.edu/science/proposing-and-observing/data-products

Resources online

- FORCAST observer manual <u>https://www.sofia.usra.edu/science/proposing-and-observing/sofia-observers-handbook-cycle-6/5-forcast</u>
- FORCAST time estimator (grisms)
 https://forcast.sofia.usra.edu/cgi-bin/forcast/forcast_grisms_calc.cgi
- FORCAST time estimator (imaging)
 https://dcs.sofia.usra.edu/proposalDevelopment/SITE/index.jsp

