

SOFIA Instruments: HAWC+

Imaging and Polarimetry HAWC+

HAWC+

2018 Community Days Workshops

USRA

HAWC+ Specifications

- PI: C. Darren Dowell (JPL)
- Imaging and Polarimetric capabilities

Band / Wavelength	Δλ/λ	Angular Resolution	Total Intensity FOV (arcmin)	Polarization FOV (arcmin)
A / 53 μm	0.17	4.7" FWHM	2.7 x 1.7	1.3 x 1.7
Bª / 63 μm	0.15	5.8" FWHM	4.2 x 2.6	2.1 x 2.6
C / 89 µm	0.19	7.8" FWHM	4.2 x 2.6	2.1 x 2.6
D / 154 µm	0.22	14" FWHM	7.3 x 4.5	3.6 x 4.5
E / 214µm	0.20	19" FWHM	8.0 x 6.1	4.0 x 6.1

2018 Community Days Workshops

DLR

HAWC+ Specifications

HAWC+ Field Of View

- 3 detectors are available: R0, R1 and T0
- Imaging and Polarimetric capabilities

2018 Community Days Workshops

HAWC+ Sensitivities

- HAWC+ total power is less sensitive than PACS, considering that HAWC+ bands are narrower than HERSCHEL's.
- However, the HAWC+ FOV is wider than PACS at long wavelengths.
 Note that the FOV of Band E (214 µm) is partially vignetted.

2018 Community Days Workshops

NASA

USRA

HAWC+ PSF

SOFIA is diffraction limited at all HAWC+ wavelengths.

2018 Community Days Workshops

HAWC+ Lissajous & Rasters

- Chop-nod is only available with the polarimetric mode.
- Total Intensity scan mapping is used with two available patterns:
 - Lissajous for small fields. Use this mode for fields comparable to the FOV of HAWC+

<u>Rasters</u> to map large fields.

nunity Days

NASA

ÚSRA

DSI

- In both cases, two scans are required to avoid striping.
- To obtain an absolute flux calibration, part of the map should include regions with no extended flux.

HAWC+ Lissajous

HAWC+ Raster

HAWC+ Total intensity

Band name	Band center (microns)	FWHM Bandwidth (microns)	Pixel Size (arcsec)	Beam Size (arcsec FWHM)	Polarimetry Field of View* (arcmin)	Photometry Field of View* (arcmin)	Instantaneous Point-Source Sensitivity ^{**} (Jy s ^{0.5})
А	53	8.7	2.55	4.85	1.4 x 1.7	2.8 x 1.7	1.9
В	62	8.9	4.02	***	2.1 x 2.7	4.2 x 2.7	***
С	89	17	4.02	7.8	2.1 x 2.7	4.2 x 2.7	2.3
D	154	34	6.90	13.6	3.7 x 4.6	7.4 x 4.6	2.0
E	214	44	9.37	18.2	4.2 x 6.2	8.4 x 6.2	1.7

USRA

HAWC+ Polarimetry

- 1) Chop-nod:
 - Nod parallel to chop, symmetric only
 - Chop-throw <8 arcmin, Chop-freq. 5-20 Hz
- 2) Half-WavePlate (HWP) rotation:
 - 4 HWP positions: 0°, 45°, 22.5° and 67.5°
 - Chop-nod at each HWP angle
- 3) Dithering:
 - 4 dither positions within the FOV
 - Repeat chop-nod and HWP rotation at each dither position
- 4) Mosaics:
 - Steps 1 to 3 are repeated for a new sky position

HAWC+ Dithering

- Bad and missing pixels in the detector of HAWC+ require dithering to have images without holes.
- Band E (214 µm): Vertical vignetting on the left and right of the array. Usable FOV ~2'x6'.

Band A

TO

RO

HAWC+ Chop-Nod

- Mosaic and Chop-nod polarimetric observations of 30 Dor •
- These observations will be publicly available.
- 8h total time of observation.
- No proprietary time on 30 Dor polarimetric data!

mmunity Days Workshops

NAS

HAWC+ Polarimetry

Polarization efficiency

Band	Quartz Half-Wave Plate Thickness (mm)	Measured System Polarization Efficiency* (%)
A 53 µm	0.55	84
(B 62 µm)	(0.55)	
C 89 µm	0.89	94
D 154 µm	1.55	98
E 214 µm	2.16	98

Instrumental polarization (IP)

Band	q (%) May 2017	u (%) May 2017	q (%) Oct-Nov 2017	u (%) Oct-Nov 2017
A	-1.55 +/- 0.05	-0.35 +/- 0.02	-1.60 +/- 0.07	-0.38 +/- 0.02
С	-1.67 +/- 0.09	0.87 +/- 0.06	-1.64 +/- 0.08	0.82 +/- 0.07
D	0.27 +/- 0.12	1.98 +/- 0.09	0.14 +/- 0.14	1.89 +/- 0.11
E	-1.00 +/- 0.18	-1.51 +/- 0.09	-1.09 +/- 0.16	-1.41 +/- 0.11

The IP is corrected by the pipeline. Systematic errors in IP ~0.3%.

2018 Community Days Workshops

USRA

HAWC+ Polarimetry

Sensitivities

Band name	Band center (microns)	MDCF (Jy), 4σ in 900 sec	Mapping Speed (arcmin ² hr ⁻ ¹ (MJy sr ⁻¹) ⁻²)	MDCPF (% Jy), 4σ in 900 sec	MIfP (MJy/sr), σ(P) = 0.3% in 1 hr for beam area
А	53	0.25	0.0027	40	28,000
С	89	0.30	0.029	20	6000
D	154	0.26	1.1	21	2000
E	214	0.23	7	24	1300

The MDCPF for Band A of 40 % Jy (Table 3) indicates that the polarization of a 40 Jy, 1 % polarized point source could be detected with 4σ significance in 900 sec

2018 ommunity Da Workshops

USRA

Preparing HAWC+ observations

- Key instruments/observation parameters:
- 1) Expected Total flux at desired wavelength
 - [use Herschel or SED modeling]
- 2) Expected degree of polarization at desired wavelength
 - [use SED modeling or polarization models]
- 3) Expected polarization accuracy.
 - It depends on your scientific goals
- 4) Go to ETC and estimate the observing time given your requirements.

2018 Community Days Workshops

W3 was observed during HAWC+ science verification. Using a 70 μ m Herschel observation, the faint region has a flux density of ~30 Jy. in a 4" pixel, this corresponds to 1.87 Jy/arcsec²

Preparing HAWC+ observations: Polarimetry

- Assumptions
- 1) Expected Total flux at desired wavelength:
 - 1.87 Jy/arcsec²
- 2) Expected degree of polarization at desired wavelength
 - P = 1 %
- 3) Expected polarization accuracy.
 - Polarization accuracy of 0.2%, then S/N = 1%/0.2% = 5

2018 Community Day Workshops

Preparing HAWC+ observations: ETC inputs

Instrument HAWC_Plus : Calculate Instrument properties:(more info) Filter: more info HAW_C+HAW_HWP_C :				С							
Calculation Method Calculation method:(more info Select the calculation method)										
S/N ratio resulting from a '	Total Integr	ation Time	of 19	s	ecs		P	' with	ר S/№	=	5
 Total Integration Time to a 	chieve a S	/N ratio of	5.0		+				,.		
 Spatial profile and continuu Point source (nominal sp Polarization Extended source having Polarization Emission line: (more info) in line. 	in addition	ess:(more in) with spati rface bright to the abov	tness	se point of a second bridge of the second bridge of the second se	or extend ightness	ed source. 9.4 1.0 1.87 1.0 NR or obs	Pe Jy Pe erving tim	xpeo rcent / sq arcsec rcent ie will be f	or the sun	+IU>	nuum plus
Single emission line at wa	avelength	88.7	microns	with line	flux 0.0	W/m	A2/sq anset	E	Ехре	ected	d P
Observing Condition Constraints Note: You can read the explan	natory note	s for more i	informati	on on the	e water va	apor overb	urden.				
Elevation Angle:	○ 20°	● 40°	⊖ 60°								
Altitude in 1000's of feet:	0 35	○ 36	0 37	0 38	0 39	0 40	• 41	0 42	0 43	0 44	0 45
Zenith Water Vapor Overburden (microns):	○ 26.7	○ 16.9	0 12.8	○ 11.0	0 9.6	0 8.4	• 7.3	0 6.3	○ 5.5	0 4.8	0 4.2

.R

Preparing HAWC+ observations: ETC outputs

SOFIA Instrument Time Estimator (SITE)

HAWC_Plus

Outputs

Relative atmospheric transmission	0.99779	
Total Integration Time	8	seconds

User Inputs

Filter name	HAW_C+HAW_HWP_C	
Band center	88.700	microns
Band width	17.200	microns
Source type	extended	
Total continuum flux	1.87	Janskys/sq arcsec
Percent Polarization	1.0	
Elevation angle	40.0	degrees
Zenith water vapor	7.3	microns
Aircraft Altitude	41.0	microns
Signal to noise per pixel	5.0	

Instrument Parameters

Instrument pixel size (X direction) 4.000	arcseconds
Instrument pixel size (Y direction) 4.000	arcseconds

2018 Community Days Workshops

NASA

Preparing HAWC+ observations: Overheads

- ETC provides on-source integration time to achieve a specific S/N.
- Enter on-source integration time in USPOT. Then USPOT will add overheads.

	Unique AOR Label: HAWC_POL_C2N-0000		
	Target: W 3 Type: SOF 36.767080, 61.874190 Equ J2000 or 2h27n New Target Modify Targ	FIA Fixed Single n04.0992s, +61d52m27.084s Equ J2000 etTarget List	
	Observing Condition & Acq	uisition / Tracking	
HAWC_PLUS Observation Order	1	Nod & Map Chop / Nod	
* Total Exposure Tin AOR Repeats Time per full nod pat HWP Angle Sequence Initial HWR angle (de)	me (sec) 640.0 1 ttern (ABBA) (sec) 20.000 s 5.0, 50.0, 27.5, 72.5 c	Nod/Chop Style Nod Match Cho Nod Throw (arcsec) 300.000 Nod Angle Coordinate Sky Nod Angle (deg) -180.00	
Example Rotation An HWP PassBand	Ingle (deg) 0.000 HAW_C (59) 0 HAW_C (59) 0	Chop Type Chop Throw (arcsec) Chop Angle (deg)	2-point 5 300.000 0.000
Dither Pattern Dither Pattern 4_Point	Dither Offset Dither Coordinate System Dither Offset X 0.000 Dither Offset Y 0.000 Dither Offset Unit arcsec Dither Scale (arcsec)	Chop Angle Coordinate Reference Chop Angle Coordinate Reference Type Unit Chop Frequency Chop Sync Source Chop on or off chip	Sky 2 arcsec 2 10.2 External False
Number 1 2 3 4	Offset East/Row/Perpen Offset North/Column/Pa 12.0 12.0 -12.0 12.0 -12.0 -12.0 12.0 -12.0 12.0 -12.0		

(expTimePerCycle * repeat)=(320.0 * 1) = 320.0 a=2.0 b=300.0 overhead = 1,480.0 duration = 1,800.0

NASA

USRA

Community Day Workshops

2018 Community Days Workshops

USRA

