Suggestions for Expanding the Science Capability of HAWC+

C. Darren Dowell Jet Propulsion Laboratory, California Institute of Technology July 27, 2020

© 2020 California Institute of Technology. Government sponsorship acknowledged.

Outline

- brief introduction to HAWC+
- upgrade wish list
- requirements & optical constraints for upgraded detectors
- suitable far-IR detectors
- need for a large-area polarization mapping mode
- polarized atomic lines

HAWC+ Upgrade Wish List

• BLAST-TNG kinetic inductance detector arrays

M. Gordon, SOFIA Instrument Roadmap Workshop #1 (June 2020)

USF

26

HAWC+ Upgrade Wish List

M. Gordon, SOFIA Instrument Roadmap Workshop #1 (June 2020)

HAWC+ Optics

Detector Performance Requirements for Upgraded HAWC+

	Band A 53 μm	Band B 62 μm	Band C 89 μm	Band D 154 μm	Band E 214 μm
pixel angular size on sky (responsive area)	(2.2´´)² (0.5 λ/D)	(3.5´´)²	(3.5´´)² (0.5 λ/D)	(6.1´´)² (0.5 λ/D)	(8.3´´)² (0.5 λ/D)
pixel physical size (existing optics)	(1.0 mm) ²				
quantum efficiency	$\geq 50\%$				
NEP (1/2 of typical flight photon noise, single pol.)	$\leq 3 \times 10^{-16}$ W Hz ^{-1/2}		$\leq 3 \times 10^{-16}$ W Hz ^{-1/2}	$\leq 2 \times 10^{-16}$ W Hz ^{-1/2}	\leq 1×10 ⁻¹⁶ W Hz ^{-1/2}
background power (typical flight, single pol.)	50 pW		60 pW	60 pW	30 pW
saturation power (lab operation, single pol.)	\geq 100 pW		\geq 120 pW	\geq 110 pW	\geq 70 pW
number of operating detectors	\geq 1850 × improvement factor				

- Operating temperature can be 0.17 K or higher with existing ADR cooler.
- Also worth considering: larger pixel angular size, with corresponding higher saturation power and NEP and lower minimum pixel count.

2020 July 27

assuming 50% Q.E.

HAWC+ Field of View

8

HAWC+ Constraints on Field of View

Figure 4. HAWC 89 µm Cold Optical Layout.

HAWC+ TES Detectors and Upgrade Ideas

32×40 "BUG" array:

- Transition-Edge Sensors (300 mK) - from NASA/GSFC, using SQUID MUX from NIST

2 side abut-able
Designed for 50%
absorption through far-IR
Intricate and clever
engineering – worth
reading about (e.g.,
HAWC+ instrument
paper, Harper+ '18)

- "R1" has ~50% yield, larger 1/f noise of unknown origin, and no "polarization mate".

These two arrays ("R0" and "T0") map to same place on the sky, in opposite polarizations.
Together, ~1850 operating pixels (72% yield)

HAWC+ TES Detectors and Upgrade Ideas

32×40 "BUG" array:

- Transition-Edge Sensors (300 mK) - from NASA/GSFC, using SQUID MUX from NIST

2 side abut-able
Designed for 50%
absorption through far-IR
Intricate and clever
engineering – worth
reading about (e.g.,
HAWC+ instrument
paper, Harper+ '18)

- "R1" has ~50% yield, larger 1/f noise of unknown origin, and no "polarization mate".

These two arrays ("R0" and "T0") map to same place on the sky, in opposite polarizations.
Together, ~1850 operating pixels (72% yield)

There is space for a 4th array throughout
 the HAWC+ system. 1064 wires total to detectors!

- While you're at it...

The low-level ghost image associated with the edge of the aperture could likely be reduced.

Photoconductors

- (Earlier presentation by J. Pipher, wavelength range to ~40 $\mu m.)$
- More challenging at long-wavelength side of HAWC+ range.
 FIFI-LS long-wavelength array, 25 x 16 pixels:

- Perhaps an expert can give status of photoconductors out to 200 μm during the Q&A following this presentation.

Kinetic Inductance Detectors

- No KID implementation is ready for HAWC+ use, but there are some advantages if detectors requiring development are under consideration:
 - Much lower wire count per array permits *pixel count well beyond HAWC+*.
 - Dual-polarization sensing in one focal plane is ideal and has been demonstrated at $\lambda \ge 250 \ \mu m$ in BLAST-TNG instrument.

BLAST-TNG 250 μm array, 1836 pixels (not shown: feedhorn array)

from www.nist.gov/programs-projects/novel-devices

chop reference beams / need for method of large-area mapping

- HAWC+ measures polarization and intensity by chopping (differencing) vs. two reference positions <= 8 arcminutes away.
- Polarization at reference positions is unknown.
 - Systematic uncertainty estimated using Novak+ '97, Schleuning '98, Dotson+ '00
- We need a method of mapping large areas with HAWC+ beyond 8 arcminutes.

chop reference beams / need for method of large-area mapping

- HAWC+ measures polarization and intensity by chopping (differencing) vs. two reference positions <= 8 arcminutes away.
- Polarization at reference positions is unknown.
 - Systematic uncertainty estimated using Novak+ '97, Schleuning '98, Dotson+ '00
- We need a method of mapping large areas with HAWC+ beyond 8 arcminutes.

Challenge of Mapping Large Areas

- Sources of signal at the detector:
 - astrophysical (polarized) intensity, diminished by variable atmosphere
 - variable atmospheric emission, polarized by tertiary & window
 - response to detector temperature variations, including some uncorrelated between the two arrays
- 10 Hz **chopping** eliminates the thermal response, but mixes points on the sky (albeit in a straightforward way).
 - Could be "bootstrapped" to double or triple the chop.
 - For efficiency in mapping large areas, could replace nodding with scanning.
- Scan-only mapping is vulnerable to thermal response and can mix points on the sky in more subtle ways.
 - Challenging to correctly recover the large-scale astrophysical emission.
 - Simulation needed to understand the spatial filtering.

Polarized Atomic Lines

- $R \approx 300$ surveys in far-IR fine-structure lines with 1000's of pixels could contribute to overall SOFIA effort to measure these important lines.
 - Furthermore, lines may be polarized and trace magnetic fields.
- narrow-band filters: fixed-tuned Fabry-Perot, added to optics carousel
- detector NEP requirement: 3×10⁻¹⁷ W Hz^{-1/2}
- Continuum subtraction via observations in the R ≈ 5 filter; needs good relative calibration.

Conclusions

- At least two appealing paths for detector upgrade:
 - full implementation of HAWC+ TES 4×32×40 design goal beyond the 2×32×40 baseline
 - technology development of far-IR dual-polarization
 KIDs, especially to field 1000's of pixels at 53 and 89
 μm
 - Expansion of field of view may need enlargement of optics.
- Science needs and instrument sensitivity motivate the development of a good large-area mapping mode.