Nye Evans Astrophysics Group Lennard Jones Laboratory Keele University, Keele Staffordshire, ST5 5BG UK

Novae

Very late thermal pulses

Stellar mergers

All are:

- transient eruptive variables reaching $L_{bol} \sim 10^4 10^6 L_{sun}$
- inject material having non-solar abundances into the ISM.
- Variable in the near/mid-IR over timescales ~ months – years.

- Semi-detached binary. WD with cool secondary.
- Mass transfer from cool component to WD via accretion disc.
- Base of accreted material becomes degenerate and hot → ThermoNuclear Runaway.
- $\blacksquare \longrightarrow$ Nova explosion.
- ~10⁻⁴ Msun of material, enriched in C, N, O, Al, Mg is ejected at ~1000km/s.

Hounsell+, 2010, ApJ, 274, 480 McQuillin+, 2012, MNRAS, 419, 330 David Hardy

KT Eri WASE

In a classical nova eruption we get:

- dust formation silicate and hydrocarbons if the WD is of CO type
- fine structure line emission
- occasionally coronal emission
- eventual evolution into a resolvable remnant

If the mass ejected in nova eruption < mass accreted onto the WD, then novae are potential SN Ia progenitors (Starrfield +, 2020, ApJ, 895, 70)

Evolution of silicate and hydrocarbon features in classical novae (Gehrz+, 2015, ApJ, 858,78. Helton+, 2011, "PAHs and the Universe")

Species	Transition	$\lambda ~(\mu m)$	E.P. (eV)	I. P. (eV)
[Na III]	${}^{2}\mathrm{P}_{1/2} - {}^{2}\mathrm{P}_{3/2}$	7.3177	47.29	71.62
[ArV]	${}^{3}P_{2} - {}^{3}P_{1}$	7.9016	59.81	75.02
[Ar III]	${}^{3}\mathrm{P}_{1} - {}^{3}\mathrm{P}_{2}$	8.9914	27.63	40.74
[Na IV]	${}^{3}P_{1} - {}^{3}P_{2}$	9.0410	71.62	98.91
[S IV]	${}^{2}\mathrm{P}_{3/2} - {}^{2}\mathrm{P}_{1/2}$	10.5105	34.79	47.22
[Ca V]	${}^{3}P_{0} - {}^{3}P_{1}$	11.4820	67.27	84.50
[Ne II]	${}^{2}\mathrm{P}_{1/2} - {}^{2}\mathrm{P}_{3/2}$	12.8136	21.56	40.96
[Ar V]	${}^{3}P_{1} - {}^{3}P_{0}$	13.1022	59.81	75.02
[Ne III]	${}^{3}\mathrm{P}_{1} - {}^{3}\mathrm{P}_{2}$	15.5551	40.96	63.45
[S 111]	${}^{3}\mathrm{P}_{2} - {}^{3}\mathrm{P}_{1}$	18.7130	23.34	34.79
[Na iv]	${}^{3}P_{0} - {}^{3}P_{1}$	21.2900	71.62	98.91
[Ar III]	${}^{3}\mathrm{P}_{0} - {}^{3}\mathrm{P}_{1}$	21.8302	27.63	40.74
[O IV]	${}^{2}\mathrm{P}_{3/2} - {}^{2}\mathrm{P}_{1/2}$	25.8903	54.93	77.41
[S III]	${}^{3}P_{1} - {}^{3}P_{0}$	33.4810	23.34	34.79
[Ne III]	${}^{3}P_{0} - {}^{3}P_{1}$	36.0135	40.96	63.45

Species	Transition	$\lambda ~(\mu m)$	E.P. (eV)	I. P. (eV)
[Mg VII]	${}^{3}\mathrm{P}_{2}-{}^{3}\mathrm{P}_{1}$	5.5032	186.51	224.95
[MgV]	${}^{3}\mathrm{P}_{1} - {}^{3}\mathrm{P}_{2}$	5.6099	109.24	141.27
[Al VIII]	${}^{3}P_{1} - {}^{3}P_{0}$	5.8500	241.44	284.60
[Ca VII]	${}^{3}P_{1} - {}^{3}P_{0}$	6.1540	108.78	127.20
Si VII	${}^{3}\mathrm{P}_{0}-{}^{3}\mathrm{P}_{1}$	6.4922	205.05	246.52
[Ne VI]	${}^{2}\mathrm{P}_{3/2} - {}^{2}\mathrm{P}_{1/2}$	7.6524	126.21	157.93
[Na VI]	${}^{3}P_{2} - {}^{3}P_{1}$	8.6106	138.39	172.15
[Mg VII]	${}^{3}\mathrm{P}_{1} - {}^{3}\mathrm{P}_{0}$	9.0090	186.51	224.95
[Al VI]	${}^{3}P_{0} - {}^{3}_{1}$	9.1160	153.83	190.48
[Mg V]	${}^{3}0 - {}^{3}P_{1}$	13.5213	109.24	141.27
[Ne V]	${}^{3}\mathrm{P}_{2}-{}^{3}\mathrm{P}_{1}$	14.3217	97.12	126.21
[Na VI]	${}^{3}\mathrm{P}_{1} - {}^{3}\mathrm{P}_{0}$	14.3964	138.39	172.15
[Ne V]	${}^{3}P_{1} - {}^{3}P_{0}$	24.3175	97.12	126.21

Expected fine structure and coronal lines in erupting novae Highlighted lines routinely observed (Evans & Gehrz, 2012, BASI, 40, 2013)

Left: coronal and fine structure emission, and silicate emission, in the recurrent nova RS Oph (Evans+, 2007, ApJL, 663, L29; 671, L157)

Right: fine structure line emission in a neon nova (dotted lines) and a CO nova (Schwarz+, 2007, AJ, 134, 516)

After a few decades, the ejected material may be resolved.

R. Corradi. Krautter+, 2002, AJ, 124, 2888. Santamaria+, 2020, ApJ, 892, 60

Far-IR (IRAS) maps of region of 1901 nova GK Per – showing extended emission.
Possibly due to the evolution of the WD to a VLTP following RL overflow.
The 1901 eruption was the first in this system (Dougherty+, 1996, A&A, 306, 547)

Very late thermal pulses

Hajduk+, 2005, Science, 308, 231

- Solar-mass star evolves towards WD region of HR; in ~25% of cases residual He shell may be ignited so star rebrightens eruptively – it becomes a "Born-Again Giant".
- Gives us a glimpse as to the possible fate of the Sun.
- Evolution very rapid "Stellar evolution in real time".
- At centre of ancient PN. Sites of carbon and hydrocarbon chemistry.
- Grossly non-solar isotopic ratios (e.g. ¹²C/¹³C ~ 4).

IR evolution of a VLTP (Sakurai's Object) over ~15 years as seen by UKIRT, Spitzer, SOFIA, showing luminosity changes, cooling of dust shell and the presence of small hydrocarbon molecules (Evans+, 2020, MNRAS, 493, 1277)

SOFIA observations point to additional mass-loss after 2008

Sakurai (1996 BAG, above) shows plain carbon dust, but FG Sge (~1900 BAG, right) shows UIRs

Stellar mergers

 V838 Mon, V4332 Sgr, V1309 Sco etc.

Left: Spitzer spectroscopy of the stellar merger V4332 Sgr (Banerjee+, 2007, ApJ, 666, L25)

> Arrows indicate Al₂O₃ feature

CKVul – a brown dwarf-WD merger in 1670. Complex dust distribution; rich in organic molecules. Below – ALMA image (Eyres+, 2020, MNRAS, 493, 1328).

(Jy/beam) 10⁻³ 1.5×10⁻³ 2×10⁻³ 2.5×10⁻³ Northern 20'' 54' cloud 51" NW arc 27°19'00' J2000 Declination Disc 50" 45' 40" SE arc 42' 30" Southern 39 lour 27º18'36' 19^h47^m38^s.4 37^s.8 19^h47^m39^s.5 38°.5 38°.0 37°.5 37°.0 38⁸ 0 J2000 Right Ascension 12000 Right Ascensio

Right, 1670 light curve and Finding chart (Shara+, 1985, ApJ, 294, 271)

Below, Spitzer IRS Spectrum (Evans+, 2016, MNRAS, 457, 2871)

SOFIA 2020 – 2025 Instrument Roadmap

For novae and related stellar transients, SOFIA is providing:

- abundances from nebular, fine structure and coronal lines;
- dust mineralogy dust condensation sequences; dust composition and evolution; in novae, VLTPs and mergers;
- insight into the evolution of a VLTP.

- It is the variable IR Universe we require <u>continuity</u> to monitor variability of IR spectra over ≥ 10 years
- → synoptic coverage with same (or equivalent) instruments for long periods of time
- → spectroscopic capability at resolution ~500 1000 out to <u>at least</u> 30µm to reach several diagnostic emission lines and silicate mineralogical features longward of 28µm (to give edge over JWST)
- Imaging with filters having $\lambda/\Delta\lambda \sim 10$, out to at least 30µm to determine abundance gradients

