

Heterodyne Spectroscopy with SOFIA

Important tool to study physical properties over a wide range of sources:

- Detailed studies of localized sources
 - multi-line studies
 - line detection experiments
 - absorption lines
 - → spectral mapping: few pixels, many frequencies
- Mapping of strong lines in extended sources
 - gas kinematics
 - **3D structure**
 - → spatial mapping: many pixels, few frequencies Canonical lines of interest:
 - [NII]: 1461 GHz (205 μm)
 - [CII]: 1900 GHz (158 μm)
 - [OI]: 2060 GHz (145 μm)
 - [OI]: 4745 GHz (63 μm)

Güsten+ 2019

Papst+ 2019

Spectral Mapping: current Status

- Mixer bandwidth is limited
 - many mixers needed for full spectral coverage
 - optical pre-separation of bands may be complex

Example 4GREAT: two dichroic mirrors (D₁₃, D₂₄) and one wiregrid polarizer (WG) to separate 4 bands

Durán+ 2020, submitted

Spectral Mapping: possible new approaches

- Grating or grism as "predisperser"
 - disperse signal to N individual mixer bands
 - allows observing N lines simultaneously
 - may achieve continuous spectral coverage (however not instantaneous!) with a manageable number of conventional mixer channels
 - requires dedicated local oscillator source for each
 - opto-mechanically challenging
 - S/N will vary strongly between bands

Spectral Mapping: possible new approaches

- Dedicated spectral mapper (RF filter bank)
 - frequency comb LO feeds array of mixers spectrally spaced by their IF bandwidth
 - instantaneous continuous frequency coverage
 - requires mixers with large IF bandwidth (not HEB)

Mixer Technology

- SIS (superconductor-isolator-superconductor) tunnel junctions: work horse at *f* < 1 THz
 - limited RF frequency, but large IF bandwidth
- HEB (hot electron bolometer): work horse at f > 1 THz
 - unlimited RF frequency, but limited IF bandwidth
- Photomixing detectors (room temperature!)

Wang+ 2019

U. U. Graf Lara-Avila+ 2019 SOFIA Instrument Roadmap Workshop - July 2020

Spatial Mapping: pixels, pixels, pixels!

Limitations to array size:

- Telescope:
 - Field of view
 - Instrument mass (600 kg; upGREAT weighs 595 kg)
- Aircraft:
 - Electrical power
- Operating efficiency
 - Tuning overhead
- Technology, complexity, money, ...
 - optimistic price tag: 25,000 US-\$ / pixel

Field of View

- SOFIA's FOV is 8 arcmin Ø, 50 arcmin²
- Beam FWHM is ~0.1 arcsec x λ / μm
- Minimum beam spacing in heterodyne system is ~2 x FWHM
 - → each beam occupies ≥0.04 arcsec² x (λ / μm)²
 - → SOFIA's focal plane accommodates
 - $\leq 4.5 \times 10^6$ / (λ / μ m)² heterodyne pixels
- Canonical lines of interest:
 - [NII]: 107 pixels
 - [CII]: 180 pixels
 - [OI₁₄₅]: 214 pixels
 - [Ol₆₃]: 1133 pixels
 - dual polarization: take any TWO of the above

Pixel-# @1.9 THz

up to 163 pixels possible technical reasons (LOdistribution, manufacturing) may limit to <u>100 or even</u> 64 pixels

Size comparison: N159

U. U. Graf

SOFIA Instrument Roadmap Workshop - July 2020

Size comparison: N159

3.25 h GREAT observing time ~15 sec / point 64 pixel array requires ~25 pointings for Nyquist sampling

⇒ 6 min plus overhead (typically ~15 min)

U. U. Graf

SOFIA Instrument Roadmap Workshop – July 2020

Heterodyne Array Components

- optics (mostly) and cryogenics same as for single pixel
- IF-processing/backends: every component needs to be multiplied!
- mixers and LO coupling: highest concentration of critical components and no space available...

Mixer Focal Plane: sizes and reimaging

- Pixel size in telescope focal plane ~50λ
 - 8.3 mm @ 1.9 THz
 - 3.3 mm @ 4.7 THz
- "natural" optical pixel size ≤6λ
 - 1.0 mm @ 1.9 THz
 - -, 0.4 mm @ 4.7 THz

UDGREAT

4.7 THz mixe

- "natural" mechanical pixel size: ~10 mm (IF-connector)
- Reimaging required (pixels individually, whole array)
- Possible approaches:
 - open structure mixers: very tight tolerances!
 - waveguide mixers: difficult machining

Büchel+ 2014

Focal Plane Unit

- individual mixer approach (upGREAT) not attractive for large array
- multi-mixer blocks (e.g. SuperCam, CHAI)
- fully integrated focal plane?

Risacher+ 2016

Focal Plane Unit

Chattopadhyay 2013

- individual mixer approach (upGREAT) not attractive for large array
- multi-mixer blocks (e.g. SuperCam, CHAI)
- fully integrated focal plane?

Local Oscillators

- Each mixer requires a local oscillator signal to mix with the sky signal
- Substantial amount of local oscillator power is needed
 Solid State Sources
- Sources of choice:
 - Sector 2 THz: multiplied
 microwave sources
 - ≥ 2THz: quantum cascade lasers

 The LO power needs to be distributed to the individual mixers

LO Distribution I: Fourier Grating Reflective phase grating as LO multiplexer

upGREAT's 7-beam Fourier grating

elegant and simple $^{\circ}$ good efficiency 0 (~90%)

power balancing is \mathbf{O} challenging

81-beam **Fourier grating** Gan+ 2019

U. U. Graf

SOFIA Instrument Roadmap Workshop - July 2020

LO distribution II: Multi-pixel Multiplier Chain

SOFIA Instrument Roadmap Workshop - July 2020

Spectrometer Backend

- Digital Fourier transform spectrometers:
 - FPGA based
 - CMOS SoC
- Bandwidth limitation (250 km/s @ 63 μm)
- Traditionally mounted on telescope structure (CWR)
 → size & weight limit
 - make more compact and lighter
 - separate sampling (on telescope) and processing (in PI rack)
 - RF over fiber?

CMOS SoC spectrometer

Klein+ 2019

19

USB-to-FIFO

(readout)

Spectrometer Se

U. U. Graf

Conclusion

- ~100 pixel array (possibly dual polarization) is challenging but feasible
- main areas of development:
 - mixer, feedhorn, optics
 - local oscillator
 - backends
 - system aspects: electronics, power consumption, tuning

Thank you