Far-IR Kinetic Inductance Detectors

SOFIA Instrument Roadmap Workshop II

Steve Hailey-Dunsheath, Caltech July 27, 2020

Introduction to KIDs

- At T = 0 the surface impedance of a superconductor is $Z_s = j\omega L_s$
- Kinetic Inductance is associated with inertia of Cooper Pairs
- Photons with $E > 2\Delta$ (v > 100 GHz for Al) break Cooper Pairs --> $\delta Z_s = R_s + j\omega \delta L_s$
- Natural frequency domain multiplexing
- Readout frequencies vary from RF to microwave (e.g., 0.2 10 GHz)

Credit: J. Zmuidzinas

Ground-Based Implementation in Sub/mm

- 2,900 total detectors

CSO demonstrators:

- MUSIC: 2,300 pixels 0.87mm -

1.98mm

- MAKO: 432 pixels at 350 μm

GHz, 850 GHz - SPACEKIDs demo 961 detector array

- NEP = 3 x 10⁻¹⁹ W/Hz^{0.5}

- 100 300 detectors / chip
- NEP = 6 x 10⁻¹⁹ W/Hz^{0.5}

Balloon Payloads

Project	wave [µm]	mode	N _{det}	flight
OLIMPO	650, 850, 1200, 2000	broadband / FTS	120	2018
BLAST-TNG	250, 350, 500	broadband polarimetry	3,318	2020
EXCLAIM	555 - 714	R = 512 on-chip spectrometer	2,130	~2021
тім	240 - 420	R = 250 grating spectrometer	7,136	~2023

ToITEC pixel; Austermann+18

TIM Collaboration

<u>University of Illinois</u> J. Vieira (PI), J. Filippini, F. Fu, **R. Nie**<u>Caltech/JPL</u> M. Bradford, B. Bumble,
S. Hailey-Dunsheath, **R. Janssen**, H. LeDuc, **L. Liu**,
J. Redford
<u>Arizona State University</u> C. Groppi, J. Hoh, H. Mani,
J. Matthewson, A. Sinclair, M. Underhill
<u>University of Arizona</u> D. Marrone, R. Keenan, I. Trumper
<u>University of Pennsylvania</u> J. Aguirre, A. Corso, J. Bracks
<u>University of Chicago / Argonne</u> P. Barry

<u>Other Collaborators</u> M. Bethermin, T. Chang, M. Devlin, O. Doré, G. Holder, K. Keating, E. Kovetz, G. Lagache, P. Mauskopf, D. Narayanan, G. Popping, E. Shirokoff, R. Somerville, B. Uzgil, J. Zmuidzinas

TIM (Terahertz Intensity Mapper*)

*Formerly STARFIRE

- Balloon-borne far-IR spectrometer to study the cosmic star formation history
- Two diffraction grating spectrometer modules to cover 240 – 420 μm spectral band at R = 250
- Use intensity mapping and individual galaxy observations to observe a large cosmic volume in 0.5 < z < 1.5
- Detect [CII] 158 μm power spectrum, and [CII] x [NII] 122 μm cross-power spectrum
- Duplicate BLAST-TNG gondola, cryostat, readout electronics, and pointing system
- 2.0 meter primary mirror

Vieira+19

Detector Design Parameters

- Approach: Lumped-element aluminum KIDs
- Number of pixels: x2 arrays of 3,000 4,000 detectors each
- Optical coupling: circular waveguide; backside etching to provide backshort optimized for 240 – 420 µm
- **Feedhorns**: Direct-drilled, multi-flare angle horns
- **Pixel pitch**: 2.3mm, hex-pack
- Lithography: single layer 20 40 nm Al film
- **KID Resonant frequencies**: 0.5 1.0 GHz (possible extension to 2.0 GHz)
- Target detector NEP: 4 x 10⁻¹⁸ W/Hz^{0.5} (goal), 1 x 10⁻¹⁷ W/Hz^{0.5} (requirement)

- inductor/meander is 0.4 μm wide aluminum

0.3 µm gap at each intersection provides a capacitive short

Optical Coupling

- Absorber couples to circular waveguide / direct-drilled horn
- 3 concentric annular rings on the wafer surface help eliminate conversion into substrate modes
- Backshort formed by backside etching in SOI wafer, 27 μm from absorber, then depositing low Tc aluminum (cosmic ray mitigation)
- Simulate band-averaged 95% coupling with 2 Ω/□ surface impedance, 20% with no backshort (measure 17%)

HFSS simulations from T. Reck (JPL)

- White noise NEP = 4 x 10⁻¹⁸ W/root(Hz)
- Dark noise flat down below 1 Hz
- Close to meeting requirement for SOFIA background-limited operation at R = 10⁵

Optimized Absorber Design

Air gap

Back short

- Reoptimize absorber for with 1 Ω/□ surface impedance
- Increase feature width from 0.3 μm to 0.5 μm
- ~95% band-averaged absorption
- ~0.3% band-averaged leakage

TIM LW Array Layout

Credit: R. Janssen

TIM LW Array Layout

Long Wavelength Module

Array	Pitch (um) [Spectral x Spatia	# Spectral] Pixels (X)	# Spatial Pixels (Y)	Readout Frequency (MHz)	
LW main*	2300 x 1992	36	24	550 – 950 [10 MHz gap @ 750 MHz]	
LW secondary*	2300 x 1992	28	26	1050 – 1950 [20 MHz gap @ 1500 MHz]	
5 6				RFSoC has 4 separate channels	
LW SEC 728 pixels 500 – 1000 MHz 50 (1000 – 2000 MHz)		LW MAIN 864 pixels 500 – 1000 MH		Current firmware allows 1000 pixels per channel in a 500 MHz band, so baseline is one RFSoC per module Extension of RFSoC to more channels and 2 GHz bandwidth would allow daisy chaining one Main and one Secondary array	
LW MAIN 864 pixels 500 - 1000 MHz		LW SEC 728 pixels 500 – 1000 MHz (1000 – 2000 MHz)		Credit: R. Janssen	

Short Wavelength Module

Array	Pitch (um) [Spectral x Spatial]	# Spectral Pixels (X)	# Spatial Pixels (Y)	Readout Frequency (MHz)
SW main*	2300 x 1992	36	30	550 – 950 [10 MHz gap @ 750 MHz]
SW secondary*	2300 x 1992	28	32	1050 – 1950 [20 MHz gap @ 1500 MHz]

RFSoC has 4 separate channels

Current firmware allows 1000 pixels per channel in a 500 MHz band, so baseline is one RFSoC per module

Extension of RFSoC to more channels and 2 GHz bandwidth would allow daisy chaining one Main and one Secondary array

Credit: R. Janssen

Layout – Boss Placement

Credit: R. Janssen

TIM Detector Assembly

Credit: S. Liu

TIM Detector Assembly

Overview

Credit: S. Liu

Fallback: 4 ROACH2-based readout systems

- BLAST heritage
- 4 CASPER ROACH2
- 4 MUSIC ADC/DAC
- 4x512 MHz bandwidth (0.5 1.0 GHz)
- 1024 tones per channel
- 45 W / ROACH2 (45 mW / detector)

Baseline: 2 RFSoC readout system

- Xilinx Ultrascale+ FPGA
- 4x 2 GHz bandwidth (0.0 2.0 GHz)
- Reduced power consumption
- Use BLAST-TNG firmare

Goal: 1 RFSoC readout system

- Xilinx Ultrascale+ FPGA
- 4x 2 GHz bandwidth (0.0 2.0 GHz)

Credit: C. Groppi, A. Sinclair

Reducing the NEP

- Move from an impedance-matched sheet across the full waveguide to a line (or cross).
- Reduce volume from 76 μ m³ to <10 μ m³
- Improve quasiparticle lifetimes with better films and lower temperature (τ_{qp} = 30 μs --> 1000 μs)
- $\tau_{qp} = 1000 \ \mu s$ demonstrated (A. Fyhrie et al. 2020)

$$R_x = \frac{\alpha \gamma S_2(\omega)}{4N_0 \Delta_0} \frac{\eta_0 \tau_{qp}}{\Delta_0 V_L},$$

Credit: P. Day

Quasiparticle Lifetime Measurements (Colorado/JPL)

Hailey-Dunsheath+, submitted

A 10 µm Absorber (U. Colorado / JPL)

- Backside illuminated
- Vertical polarization sensitive
- Absorber line interrupted with long meander to increase the resistance per unit length
- Pitch is 0.4mm
- Single-mode waveguide not possible at λ < 150 μm, coupling through multi-mode waveguide or microlens

See talk by Jason Glenn on Tuesday

Parameter	SOFIA Requirements	TIM KIDs	10 μm prototype KIDs
Operating Temp [mK]		< 250 (requirement) 150 (goal)	< 250 (requirement) 150 (goal)
Wavelength [µm]	40 - 215	350	10
Optical Coupling		Single-mode waveguide $\lambda > 150 \ \mu m$ Multi-mode waveguide or microlenses at $\lambda < 150 \ \mu m$	microlenses
NEP [W/VHz]	3 x 10 ⁻¹⁷ (R = 10 ³) 3 x 10 ⁻¹⁸ (R = 10 ⁵)	4 x 10 ⁻¹⁸ (demonstrated) <1 x 10 ⁻¹⁹ projected (low volume, low temp, high τ _{qp})	~4 x 10 ⁻¹⁸ (electrical) <1 x 10 ⁻¹⁸ projected (low temp, high τ _{qp})
Quantum Efficiency	> 50%	~ 95% dual-pol, single-mode waveguide over 30% band (simulated)	
Pitch [mm]	0.5	2.3	0.4
Subarray pixel count		~1,000	~1,000
Total pixel count	~10,000	x2 arrays totaling ~7,000	