

GREAT, upGREAT, 4GREAT, super-GREAT ???

- GREAT enhancements -

Bernd Klein

GREAT Co-Investigator On behalf of the GREAT consortium

Max-Planck-Institut für Radioastronomie

bklein@mpifr-bonn.mpg-de

<u>CRREAT</u>

GErman Receiver for Astronomy at THz Frequencies

Modular multi-color heterodyne array receiver for high-resolution spectroscopy with SOFIA

Picture: C. Duran

GREAT – the Consortium

GREAT is a Principle Investigator instrument: funded, developed & operated by

Max-Planck Institut für Radioastronomie

B.Klein (Co-PI, FFT spectrometer) O. Ricken (system engineer) N. Reyes (system engineer)

Universität zu Köln, KOSMA

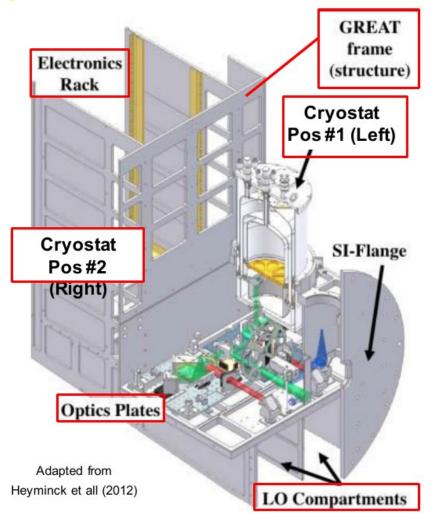
J. Stutzki (PI, software) U. Graf (system engineer) K. Jacobs (HEB mixers development)

DLR Planetenforschung

H.-W. Hübers (Co-PI, QCL development)

The GREAT team

GREAT – Continuous System Upgrades


The modular design of GREAT allows to implement technological improvements within a short time-frame, keeping GREAT at the forefront in terms of performance / science.

Since commissioning in 2011 we have

- upgraded all our HEB mixers (much improved system noise temperatures)
- improved all local oscillator sources (and related, the common optics)
- replaced all our FFT spectrometer back-ends with latest technologies (wider IF bandwidth – defined by HEB roll-off)
- optimized mapping efficiency by introducing multi-pixel arrays (→ upGREAT)
- added new science opportunities by opening more sky frequency regimes (→ 4GREAT)

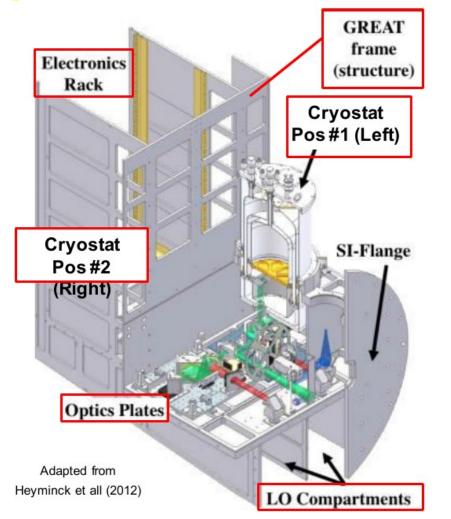
GREAT – System Overview

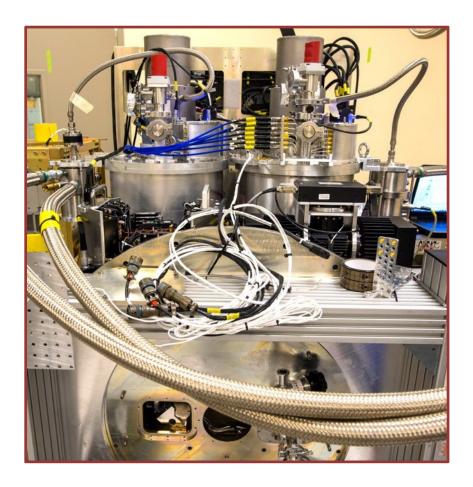
GREAT is a highly modular heterodyne spectrometer (R ~ 10^8)

Operating in science-defined frequency bands between 490 GHz and 4.7 THz

Two cryostats can be operated simultaneously

Since 2018 operation has been streamlined to two configurations only:


LFA & HFA and 4G & HFA

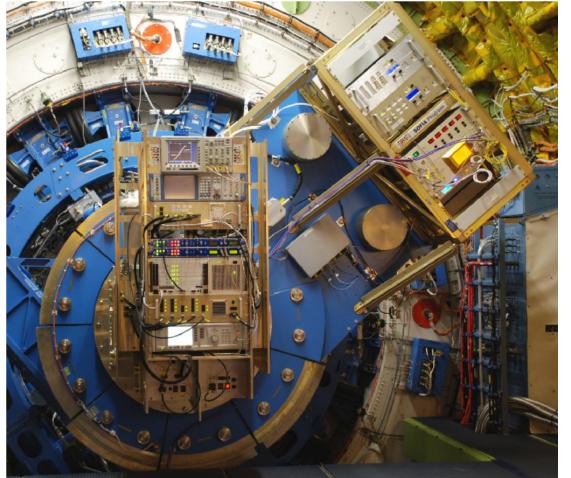

Channel: Cryostat + LO + Optics plate

GREAT – System Overview

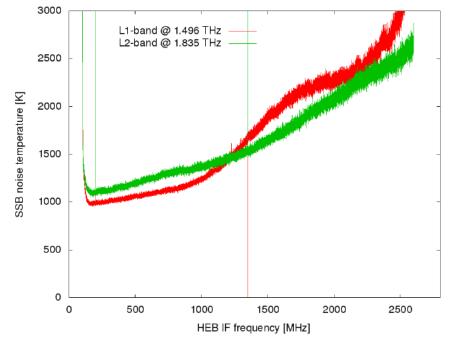
Channel: Cryostat + LO + Optics plate

GREAT – singe pixel (2011-2014)

Receiver Name		Freq. range	Pixel configuration	Lines of interest
Original	L1	1.26 – 1.52 THz	single pixel	CO series, [NII], OD, H_2D^+
GREAT	L2	1.82 – 1.91 THz	single pixel	NH ₃ , OH, CO(17-16), [CII]
Cooling:	Ma	2.49 – 2.56 THz	single pixel	¹⁸ ОН(² П _{3/2})
Wet (LHe)	н	4.74 THz	single pixel	[OI]



Bernd Klein, SOFIA Instrument Roadmap Workshop – July 2020

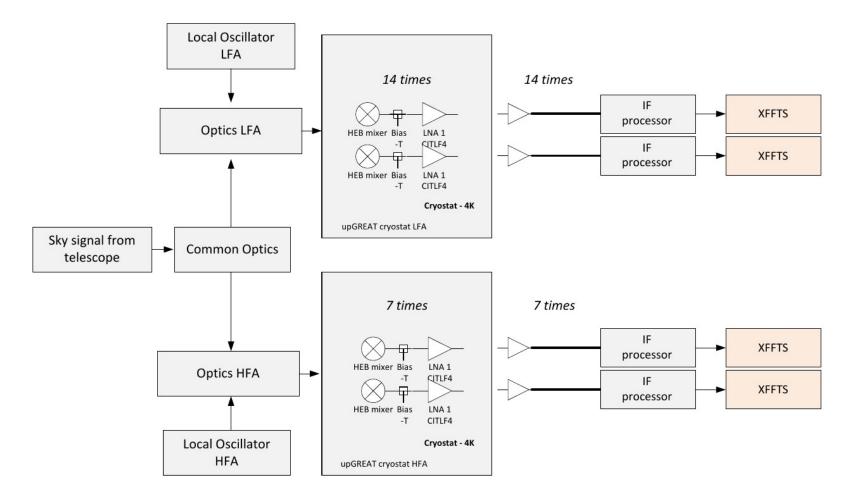


GREAT – singe pixel (2011-2014)

GREAT mounted to the instrument flange (2012)

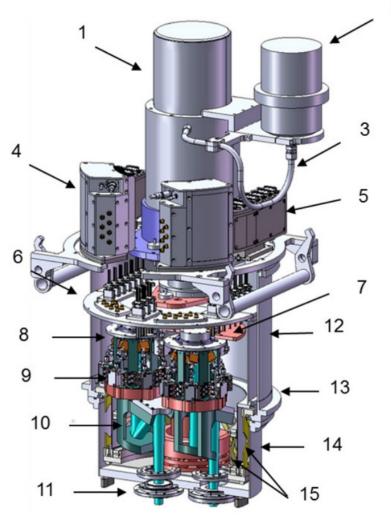
Receiver noise temperatures after improvements implemented for science cycle 1.

upGREAT – 7/14 pixel (2015 - now)



Receiver Name		Freq. range	Pixel configuration	Lines of interest
Original	L1	1.26 – 1.52 THz	single pixel	CO series, [NII], OD, H ₂ D ⁺
	L2	1.82 – 1.91 THz	single pixel	NH ₃ , OH, CO(17-16), [CII]
Cooling:	Ma	2.49 – 2.56 THz	single pixel	¹⁸ ОН(² П _{3/2})
Wet (LHe)		4.74 THz	single pixel	
upGREAT	LFA	1.83 – 2.07 THz (goal 1.9–2.5 THz)	14 pixels	NH3, OH, CO series, [CII]
Cooling: Cryo-Cooler	HFA	4.745 THz ± few GHz	7 pixels	[01]

upGREAT – 7/14 pixel (2015 – now) - the concept -


Main components of the upGREAT LFA and HFA channels when operated in parallel onboard SOFIA.

upGREAT - 7/14 pixel (2015 - now)

2

3D-Model of the upGREAT cryostat

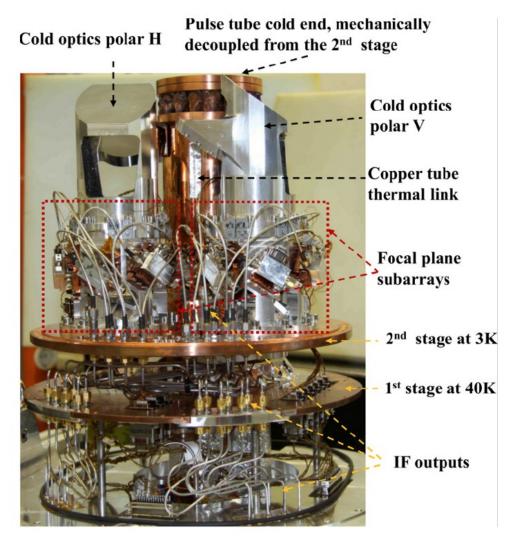


Photo of the inner part of the LFA cryostat

upGREAT - 7/14 pixel (2015 - now)

New SOFIA infrastructure:

In 2017, the installation of 2 compressors on board SOFIA was completed, allowing the simultaneous operation of 2 closed circuit coolers.

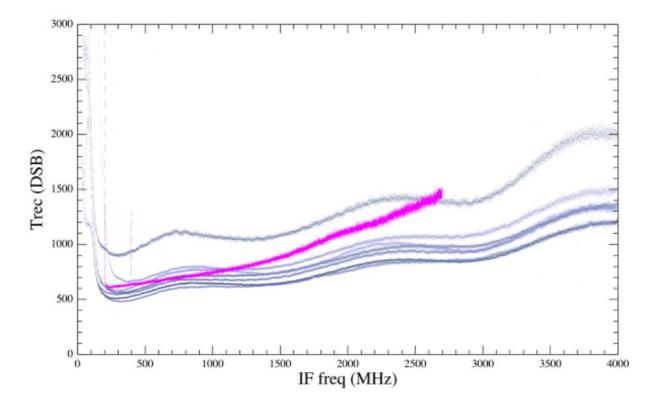
Bernd Klein, SOFIA Instrument Roadmap Workshop – July 2020

	Low Frequency Array (LFA)	High Frequency Array (HFA)
RF bandwidth	1.9-2.5 THz (goal)	∼4.745 THz
IF bandwidth	0.2-4 GHz	0.2-4 GHz
HEB technol- ogy	waveguide-based HEB NbN on Si mem- brane	waveguide-based HEB NbN on Si mem- brane
LO technology	cooled photonic mixers (goal) / solid-state chains (baseline)	quantum cascade lasers (QCL)
LO coupling	beam splitter	beam splitter
Array layout	2x7 pixels for orthogonal polarizations in hexagonal configuration with central pixel	1x7 pixels in hexagonal configuration with central pixel
T_{REC}	∼600-1200K DSB 0-4 GHz IF	∼800-1600K DSB 0-4 GHz IF
Back-ends	0-4 GHz with min 16k channels	0-4 GHz with min 16k channels

upGREAT – 7/14 pixel (2015 – now) - technical specifications -

GREAT Configurations				
Front-End	Frequencies (GHz)	Lines of Interest	DSB ⁶ Receiver Temperatures (K)	
HFA ¹	4744.77749	[OI] 63 µm	1250	
LFAH ²	1835–2007	[CII] 158 μm, CO, OH, ² Π _{1/2} , ¹² CH, ¹³ CH		
LFAV ²	1835–2007 2060–2065	Same as LFAH, plus [OI] 145 μm	1000	

Observer's Handbook for Cycle 9

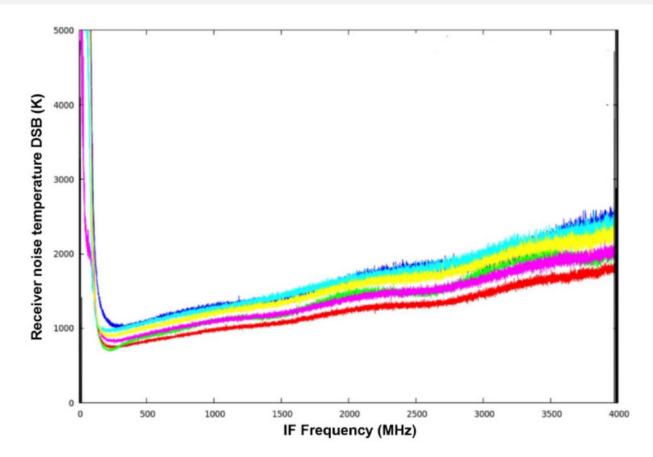


upGREAT – 7/14 pixel (2015 – now)

upGREAT / LFA performance:

Uncorrected Double sideband noise temperatures (K) at 1.9 THz versus IF frequency for the H-polarization LFA 7 channels.

Bernd Klein, SOFIA Instrument Roadmap Workshop – July 2020



upGREAT – 7/14 pixel (2015 – now)

upGREAT / HFA performance:

Double sideband noise temperatures of the 7 HFA pixels when pumped under best conditions

Bernd Klein, SOFIA Instrument Roadmap Workshop – July 2020

4GREAT – our latest addition (2018/19 - now)

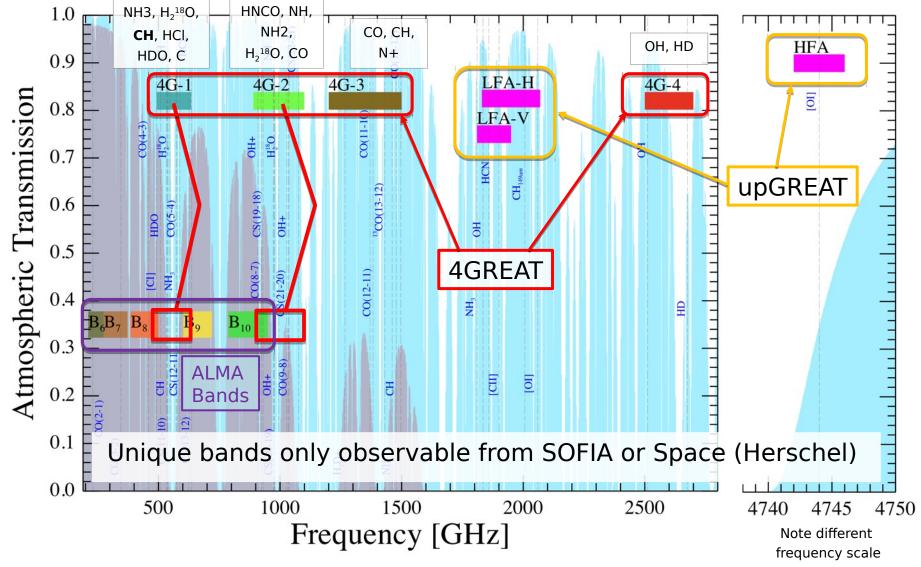
4GREAT is a 4-frequency channel receiver for simultaneous operation

- → **4G-1** 480 635 GHz
- → **4G-2** 890 1100 GHz
- → **4G-3** 1220 1500 GHz
- → **4G-4** 2480 2700 GHz
- (HIFI spare flight SIS mixer, by LERMA / Obs. Paris)
- (HIFI spare flight SIS mixer, by SRON NL)
 - (replaces previous LHe L1 channel from GREAT)
- GHz (replaces LHe M channel from GREAT)

Optics:

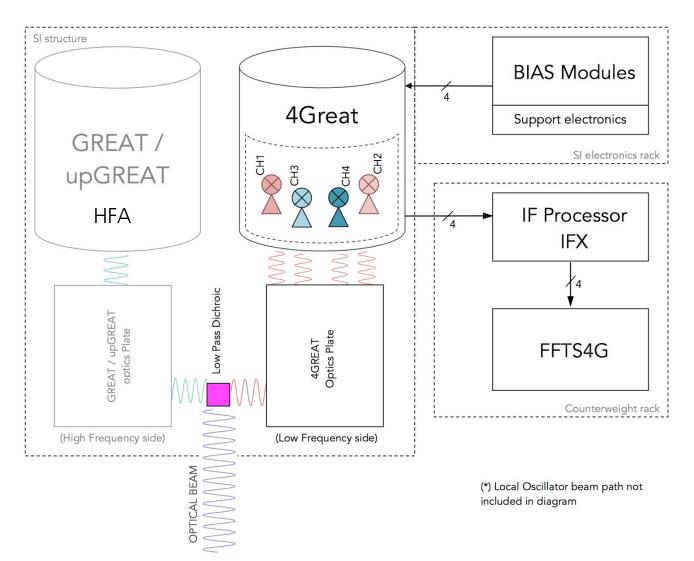
- \rightarrow simultaneous 4 different "frequency bands" + HFA
- \rightarrow frequency separation
- \rightarrow operation in parallel with upGREAT / HFA (beam filtering)
- \rightarrow optics for signal + optics for local oscillators
- \rightarrow two LOs: hosting 4 LO sources now:
 - a standard LO box as the other GREAT/upGREAT systems (4G-3, 4G-4)
 - a smaller enclosure fro the 2nd LO box (4G-1, 4G-2)

Cooling:


 \rightarrow close cycle coolers (two compressors, same as for upGREAT LFA + HFA)

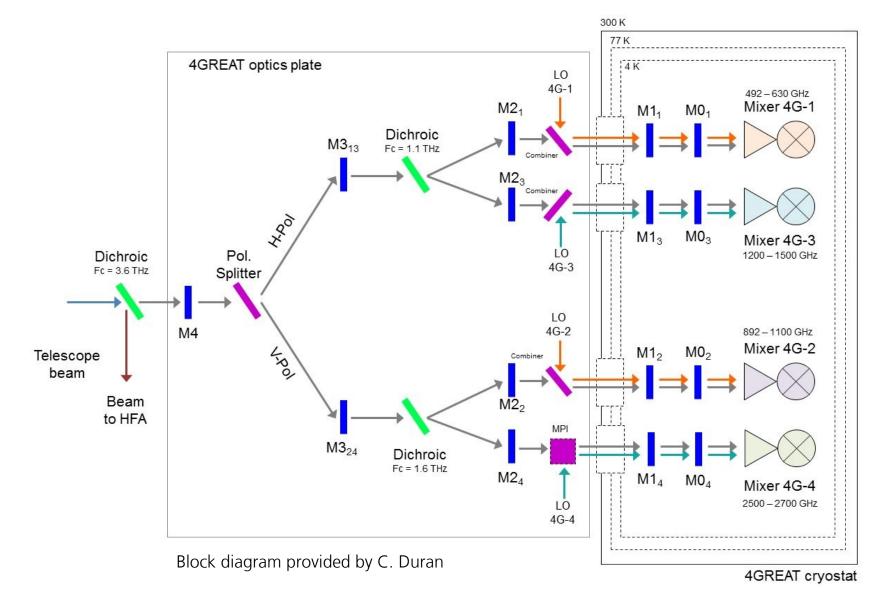
Optics have to cover a wide range: 480 – 2700 GHz !

4GREAT – the multicolor extension of GREAT (2018/19 - now)

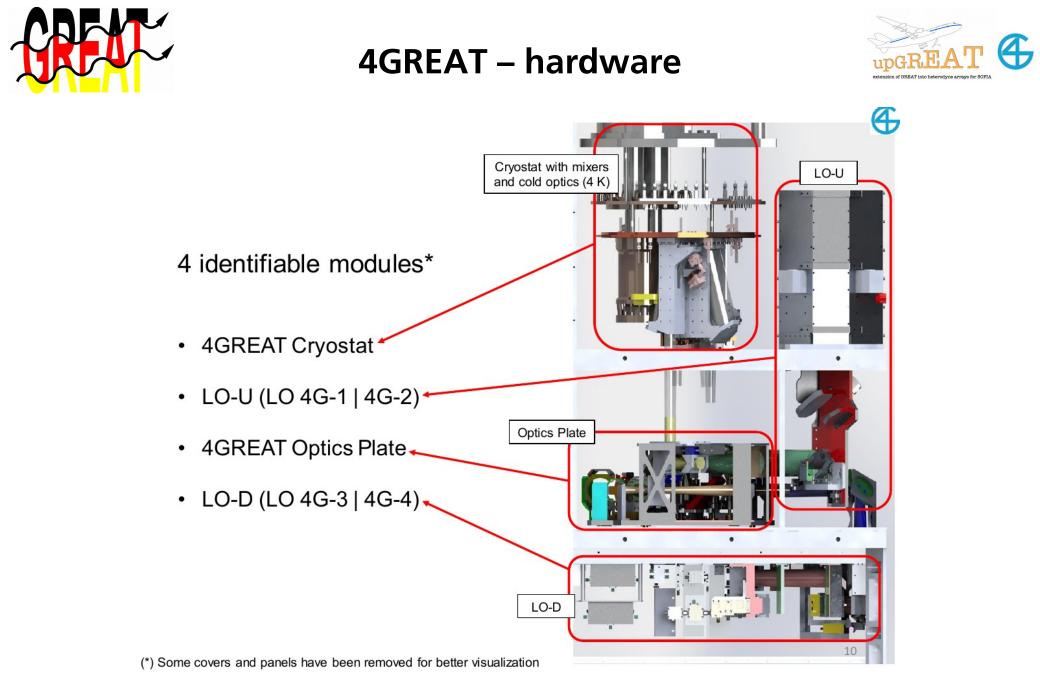


Bernd Klein, SOFIA Instrument Roadmap Workshop – July 2020

4GREAT – operation principle

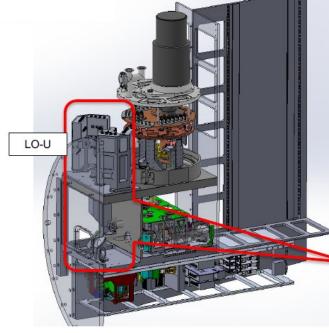


4GREAT – optics design



4GREAT – the multicolor extension of GREAT (2018/19 - now)

Channel	CH1	CH2	CH3	CH4	
RF Bandwidth [GHz]	492 - 630	892 - 1100	1200-1500	2490 - 2700	
IF Bandwidth [GHz]	4 - 8	4 - 8	0.5 - 3.5	0.5 - 3.5	
	SIS	SIS	HEB	HEB	
Mixer	Herschel HIFI - 1	Herschel HIFI - 4	GREAT -L1 (KOSMA)	GREAT - M-HD	
	(LERMA)	(SRON)		(KOSMA)	
Amplifiers (LNA /	LNF-LNC4_8C (LNF)	LNF-LNC4_8C (LNF)	CITLF4 (CMT)	CITLF4 (CMT)	
Warm Amp)	AFS3-00100800	AFS3-00100800	AFS3-00100800	AFS3-00100800	
	(Miteq)	(Miteq)	(Miteq)	(Miteq)	
	S.S.Chain	S.S. Chain	S.S. Chain	S.S. Chain	
Local Oscillator	AMC563@LO-U	AMC581@LO-U	AMC627@LO-D	AMC616@LO-D	
	(200uW)	(150uW)	(30uW)	(2.5 uW)	
LO Coupling	Wiregrid Splitter	Wiregrid Splitter	Wiregrid Splitter	Diplexer	
	Common optic plate	Common optic plate	Common optic plate	Common optic plate	
Optics	+ Mixer block optics	+ Mixer block optics	+ Mixer block optics	+ Mixer block optics	
	+ LOU Optics	+ LOU Optics	+ LOD Optics	+ LOD Optics	
TRec (DSB)	120	350	1100	1700	
IF Processor	IFX x 1. High Order				
11 110065501	BPF 4-8 GHz	BPF 4-8 GHz	BPF 0-4 GHz	BPF 0-4 GHz	
Backend	FFTS4G. Nyquist	FFTS4G. Nyquist	dFFTS4G x 1ch	dFFTS4G x 1ch	
Dackend	Band 4-8	Band 4-8			
Taper (dB)	11.86 - 16.54	12.25 - 16.09	13.29 - 14.78	14.35 - 13.68	



4GREAT – LO-U

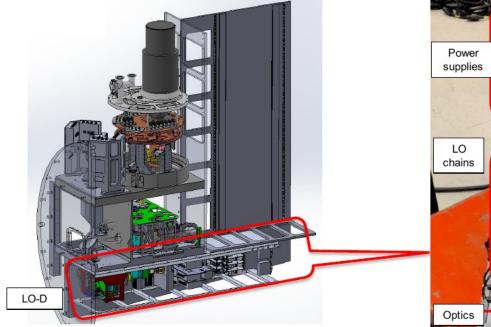
LO chains: 4G1 and 4G2

Optics for LO signal coupling

- 4G-1LO: Parabolic mirror + 2 GT •
- 4G-2LO: Parabolic mirror + 2 GT •

2 independent Solid State LO chains (Virginia Diodes Inc.)

- 4G-1LO: 495 to 628 GHz, 200 µW. ٠
- 4G-2LO: 890 to 1085 GHz, 150 µW. ٠

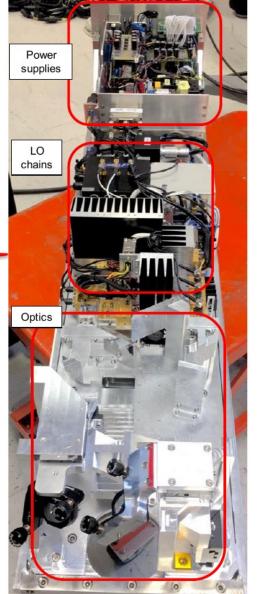

Attenuators:

- 4G-1LO: Variable aperture wheel •
- 4G-2LO: Rotary wire-grid ٠

4GREAT – LO-D

Optics for LO signal coupling

- 4G-3LO: 1 Parabolic mirror + 1 GT + 1 ellipsoidal mirror
- 4G-4LO: Parabolic mirror + 2 GT


2 independent Solid State LO chains (VDI)

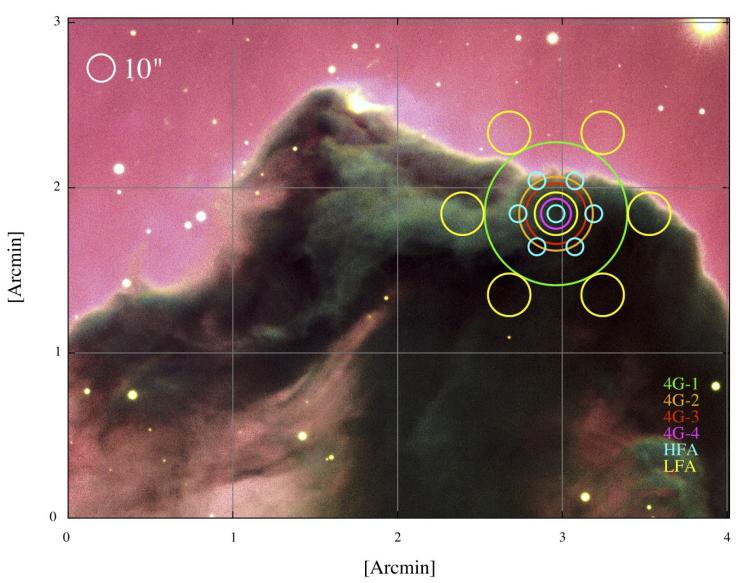
- 4G-3LO: 1240 to 1525 GHz, 30 μW
- 4G-4LO: 2490 to 2685 GHz, 2.5 μW

Power supplies for 4 x LO chains

Rotary grids as attenuators.

Bernd Klein, SOFIA Instrument Roadmap Workshop – July 2020

4GREAT – Receiver temperatures (DSB)



Bernd Klein, SOFIA Instrument Roadmap Workshop – July 2020

upGREAT + 4GREAT



4GREAT @ SOFIA

→ 4G-1, 4G-2 and 4G-4 integrated in March 2017, commissioned (NZ) 2017 → 4G-3 integrated early 2028, commissioned (NZ) June-July 2018

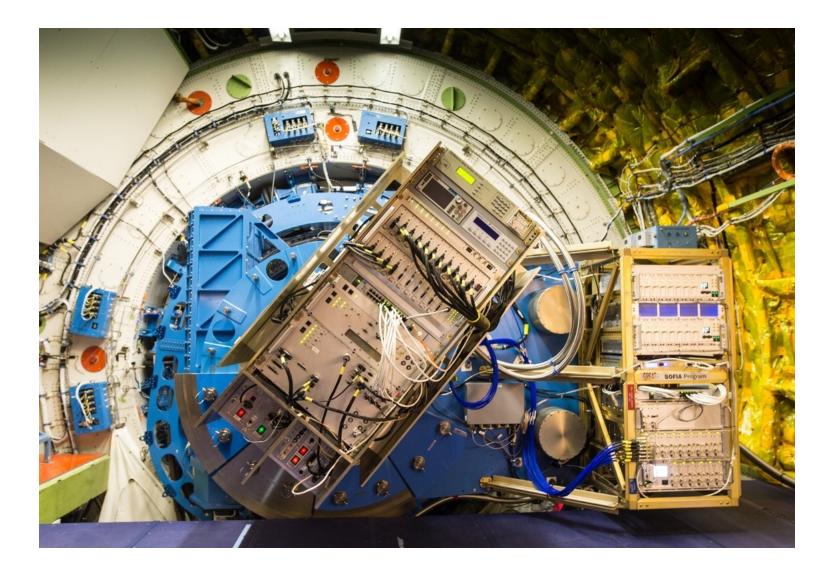
GREAT – flight / publication records

Since first light on April 01, 2011 GREAT was operated

- → during all observing cycles, including Early & Basic Science
- \rightarrow on all 5 New Zealand deployments
- \rightarrow on 162 successful science flights in total (GT: 68, OT: 94)
- \rightarrow more than 200 scientific projects

Total number of articles in refereed journals (published, in press) based on GREAT date:

- → science: 80 (3x Nature)
- \rightarrow technical: 14 (1x IEEE best paper award for upGREAT)
- → publication list: <u>https://www.mpifr-bonn.mpg.de/4482905/publications</u>


Technical references:

- \rightarrow GREAT S. Heyminck, et al., GREAT: the SOFIA high-frequency heterodyne instrument, A&A 542, L1 (2012)
- → upGREAT C. Risacher, et al., The upGREAT 1.9 THz multi-pixel high resolution spectrometer for the SOFIA Observatory, A&A 595, 34 (2016)
- → 4GREAT C. Duran, et al., 4GREAT a four-color receiver for high-resolution airborne terahertz spectroscopy (2020, in preparation).

The SI-Rack and the CW-Rack offer no further space for electronics

GREAT is already at the power and weight limit

upGREAT (HFA + LFA):

Summary of power consumptions

	Available per SOF-AR-ICD-SE03-2029	Estimation for LFA/HFA configuration
SOFIA power 115VAC UPS	2.0 kVA	1.6 kW
SOFIA power 115VAC FC	3.5 kVA	3.0 kW
SOFIA power 230VAC UPS	1.0 kVA	0.1 kW

4GREAT (HFA + 4G):

Summary of power consumptions

	Available per SOF-AR-ICD-SE03-2029	Estimation for HFA/4GREAT configuration
SOFIA power 115VAC UPS	2.0 kVA	1.7 kW
SOFIA power 115VAC FC	3.5 kVA	2.6 kW
SOFIA power 230VAC UPS	1.0 kVA	0.1 kW

Summary of rack weights

	Available per SOF-AR-ICD-SE03-2015	Estimation for LFA/HFA configuration
SI rack	600 kg	583 kg
CW rack	105 kg	99 kg
PI rack	273 kg	185.5 kg

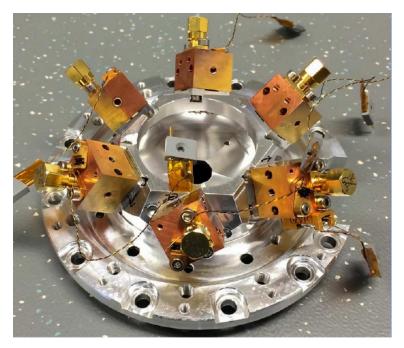
Summary of rack weights

	Available per SOF-AR-ICD-SE03-2015	Estimation for HFA/4GREAT configuration
SI rack	600 kg	593 kg
CW rack	105 kg	99 kg
PI rack	272 kg (136kg per bay)	185.5 kg

<u>A possible extension of GREAT:</u> Extension of the HFA 7 \rightarrow 14 pixels

Already in mid 2018 the GREAT team discussed the extension of the HFA from now 7 pixels to 14 pixels (2x 7 pixel, dual polarization mode, similar to LFA) to improve the sensitivity at 4.7 THz.

- → At least another 7 HFA HEB mixers are required: no spares available; new mixers have to be produced
- → The current bias electronics (SI rack) do not offer any further space for expansion: Development of a new electronics.
- → The current IF processor would have to be extended by 7 chains: With the current technology we run into weight and space problems in the CW rack!
- → The current FFT spectrometer has no capacity for another 7 IF channels: But new developments are available: qFFTS4G (4x 4 GHz bandwidth per FFTS board)
- → <u>Man power problem</u>: some GREAT engineers in Bonn and Cologne have left the project; new instrument developers are very difficult to find
- → Because GREAT is a PI instrument it is operated by the team engineers. Therefore these engineers have less time for new developments.
- → Unsure future of SOFIA (MoU NASA DLR ends this year). New instrument developments need longer-term perspectives!
- → J. Stutzki (PI, UzK) will retire in May 2022; K.Menten (MPI) will retire in Oct 2025. It's not clear whether the successors will want to continue to do science with SOFIA.



Super-GREAT ???

Is it possible to develop a super-GREAT with 100 or more pixels? <u>Answer:</u> Yes, but not with the current concept of GREAT.

→ multi-mixer approach (upGREAT) not attractive for large heterodyne array
→ multi-mixer blocks (e.g., SuperCam, CHAI) or fully integrated focal plane
units are needed (see talks from Paul Goldsmith, Urs Graf and Chris Walker)

UpGREAT mixer plate C. Risacher, et al, (2016)

Super-GREAT ???

Is it possible to develop a super-GREAT with 100 or more pixels? <u>Answer:</u> Yes, but not with the current concept of GREAT.

Further challenges for a super-GREAT:

- \rightarrow mixer, feed-horn, optics
- → powerful and easy tunable LOs and LO distribution (solid state LO, QCL, photonic LO)
- → compact, low-power and lightweight bias-electronic, IF processor and spectrometer back-ends
- → new software developments that allow easy and fast tuning of the many mixers.
- \rightarrow systems aspects: power-, space- and weight limitations
- \rightarrow and finally: man power, funding and long development time