The Role of SOFIA in Extragalactic Science

A Roadmap exercise

Suzanne Madden

· CEA, Saclay, France

Points I want to make in this presentation

- [CII] is the workhorse of SOFIA for local universe galaxies
 - [CII] is one of the brightest coolants of the neutral ISM of galaxies
 - [CII] => SFR in local and high-z galaxies
 - [CII] => tracer of CO-dark gas (especially in low Z galaxies where CO is faint or not detected)
 - SOFIA FIFI-LS has already mapped galaxies completely in [CII]
- [CII] mapping is a starting point: need to tackle the complex multiphase ISM
 - Structure of the ISM ? Ionized phase: Low n & high n ? Molecular/PDR ?
 - Low metallicity ISM is a particular niche : [OIII] is brighter than [CII]. SOFIA can do the 52 mu [OIII] line that Herschel/PACS could not do.
 - SOFIA can do some OI 63, OIII 88 & 52 in galaxies, but needs improved spectral resolution (especially in the blue channel of FIFI-LS)
- <u>Big Science Goal</u>: What is the structure of the ISM and how does it evolve in terms of porosity, phases, metal enrichment, star-formation, feedback?
- The local universe is the laboratory to help interpret high-z observations and develop diagnostic tools SOFIA's role!

Conclusion: How can SOFIA grow the exgal community ?

- FIFI-LS is a mapping machine for galaxies, but needs improved spectral resolution by factor of 2 (at least the blue channel is very low R) & needs more spaxels (to map faster)
- Map other ISM phases with SOFIA. SOFIA should expand to shorter wavelengths – bright nebular lines covering wide range of critical densities & ionisation energies. Ideally ~ to fill the gap where EXES ends and FIFI-LS+ (with higher FoV & spectral resolution) begins.
- HIRMES would be a perfect solution: higher R in MIR/FIR, faster mapping, wavelength coverage and improved sensitivity
- SOFIA's *BIGGEST* extragalactic niche: Magellanic Clouds => *more NZ flights*
- *upGREAT* => *an* [*OIII*] *channel* (88 or 52 mu) ?
- SOFIA : the only MIR-FIR we have to prepare for SPICA & Origins

Tracing star formation with [CII] – Local galaxies

Tracing star formation with [CII] – high redshift

Tracing star formation with [CII] – high redshift

[CII] and CO in Galaxies: metal-rich vs. metal-poor

Madden + 2000, 2020 Stacey + 1991, 2010, Hailey-Dunsheath et al. 2010,....

[CII] and CO in Galaxies: metal-rich vs. metal-poor

Madden + 2000, 2020 Stacey + 1991, 2010, Hailey-Dunsheath et al. 2010, Gullberg + 2015,Aravena + 2016; Maiolino + 2005, Wang + 2013, Benford...

Full-Disk CII Mapping of NGC6946 & M51 with SOFIA

Pineda+ 2018

Full-Disk CII Mapping of NGC6946 & M51 with SOFIA

Separate galactic components: what contributes to the [CII] emission on global scales? integrated flux ~75% arm, 15% center, 10% interarm

Some other galaxies with SOFIA FIR spectroscopy: FIFI-LS full maps of M82 (Fischer; Latzko) & NGC253 (Beck), IC10 (Polles)..... upGREAT pointings in M51 (Pineda); M101 (Tarantino), NGC4214 (Fahrion + 2014)

The Complexity of the Multi-Phase ISM

Modeling of the ISM – from many MIR-FIR lines to physical conditions

ISM structure at low Z: VERY porous, clumpy. Small covering factor of PDRs. High filling factor of diffuse gas where UV photons escape from HII regions.

Declination

Low metallicity star-forming galaxies

LMC 30 Dor Z = 1/2 Z _☉ D = 50 kpc	IC10 Z = 1/3 Z _☉ D = 700 kpc	NGC1569 Z = 1/4 Z _☉ D = 3.36 Mpc
Prista (YJK bands) Image: Circl of the second s	$50^{\circ} = 194 \text{ pc}$ PAH (8 µm) H α stars (3.6 µm) 40.0 30.0 20.0 10.0 0.20:00.0 19:50.0	+64:52 +64:50 +64:50 04:31:00 R.A. (J2000) 04:30:30
Right ascension	Right ascension	

160µm HERITAGE Meixner+ 2010 Hα MCELS Smith+ [CII] BICE Mochizuki+ 1994. Rubin+ 2009

Zoom into 30 Doradus PDR

*Chevance+2020: PDR modelling => little CO-bright H*² *but 75% CO-dark gas*

ALMA + SOFIA => excellent science synergy!

*Chevance+2020: PDR modelling => little CO-bright H*² *but 75% CO-dark gas*

Resolve ISM phases in Local Group galaxies: LMC & IC10 & NGC1569

Electron density in the ionised gas

Summary

- SOFIA/FIFI-LS is a mapping machine for complete wide-field maps of [CII] in nearby galaxies.
- NGC6946 and M51 case studies shows significant and systematic variation of key line ratios CII/SFR, CII/CO across the disk. Should have maps in more galaxies – statistical studies. Link the local conditions to the global.
- Nearby Low metallicity galaxies show different ISM structure than disk SF galaxies: [OIII] is the brightest FIR line, not [CII]. [OIII] can be exploited by SOFIA in low metallicity galaxies
- Low metallicity star-forming galaxies: little CO detected, but vigorous SF:
 **most of the H₂ is not traced by CO.
 [CII] tracing total H2 gas mass in low Z galaxies other environments?
- Local Group Galaxies, especially the Magellanic Clouds, are SOFIA's extragalactic strong points: diverse environments, including low metallicity laboratories and close enough to be well resolved.
- Bridging cloud-scale conditions to the larger scale environment:
 - LMC & SMC SOFIA and ALMA synergy
- SOFIA needs to map galaxies in more diagnostic lines

Conclusion: How can SOFIA grow the exgal community ?

- FIFI-LS is a mapping machine for galaxies, but needs improved spectral resolution by factor of 2 (at least the blue channel is very low R) & larger FoV (mismatch of blue vs red Fov)
- SOFIA should expand to shorter wavelengths bright nebular lines covering wide range of critical densities & ionisation energies. Ideally ~ to fill the gap where EXES ends and FIFI-LS (with higher spectral resolution and FoV) begins.
- *upGREAT* => *an* [*OIII*] *channel* (88 or 52 mu) ?
- HIRMES would be a perfect solution: higher R in MIR/FIR, faster mapping, wavelength coverage and improved sensitivity
 - faster mapping of many more galaxies: PHANGS, SAMI, CALIFA...statistically significant properties within galaxies
 - To map full galaxies also in OI, OIII, NII
 - The versitility of HIRMES would definitely bring the exgal community on board
- SOFIA's BIG niche: Magellanic Clouds => more NZ flights !!!
- SOFIA : the only MIR-FIR we have to prepare for SPICA & Origins

SOFIA to exploit the nearby universe to calibrate distant, high-z universe