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ii.   Preface

The SOFIA Observer's Handbook for Cycle 7 (hereafter referred to as the Observer's
Handbook), provides detailed information about SOFIA operations and the instruments
that will be available for observations during Cycle 7. This document is the primary
technical reference for astronomers who wish to submit a proposal in response to the
SOFIA Cycle 7 (CfP). The CfP document and the Observer's Handbook (along with the
documents and websites explicitly referred to within) contain information sufficient for
planning viable SOFIA observations.

SOFIA is a joint project of NASA and the Deutsches Zentrum für Luft und Raumfahrt
(DLR). The SOFIA Science Center (SSC), responsible for overseeing the scientific aspects
of the mission, is located at the NASA Ames Research Center in Moffett Field, CA. Flight
operations are conducted out of the NASA Armstrong Flight Research Center (AFRC) in
Palmdale, CA. The Science Mission Operations are jointly managed by the Universities
Space Research Association (USRA) for NASA and by the Deutsches SOFIA Institut (DSI),
in Stuttgart, for DLR. Aircraft operations are managed by NASA AFRC.

This version of the handbook is applicable to for Cycle 7. Between the time of writing and
the start of Cycle 7 observations, the analysis of data obtained as part of
ongoing Instrument Commissioning work for HAWC+ are likely to provide more empirical
information regarding instrument performance. The Observer's Handbook will be
updated as necessary and the list of changes will be included at the beginning of the
document. Critical updates will also be published on the Cycle 7 web page. Any
information that supersedes what is given in this document will be explicitly indicated.



The following additional documents are available on the SOFIA Information for
Researchers web pages.

The Cycle 7 Call for Proposals describes how to prepare and submit proposals. It
includes details on how proposals will be evaluated and formally establishes the
policies for all matters concerned with the rules governing SOFIA Cycle 7 for guest
observers. The expected release for the Cycle 7 Call for Proposals is June 2018.
The FORCAST Observation Modes document provides an explanation of the basic
FORCAST observing modes for imaging observations.
The Science Instrument Suite web pages provide a brief overview of the suite of
instruments that will be available on SOFIA once it reaches full operational capability.
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1.1 SOFIA and Its Instruments
1.1   SOFIA and Its Instruments
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a telescope with an
effective diameter of 2.5 meters, carried aboard a Boeing 747-SP aircraft. It is the
successor to the smaller Kuiper Airborne Observatory, which was operated by NASA from
1974 to 1996. The observing altitudes for SOFIA are between 37,000 and 45,000 feet,
above 99% of the water vapor in the Earth's atmosphere. The telescope was designed to
allow imaging and spectroscopic observations from 0.3 to 1600 μm, with specific
capabilities dependent on an evolving science instrument suite, making it one of the
premier facilities for astronomical observations at infrared and sub-millimeter
wavelengths. The present instrument suite provides coverage from 0.3–612 μm with
additional capabilities currently in development.

The telescope for SOFIA was supplied by the DLR as the major part of the German
contribution to the observatory. It is a bent Cassegrain with 2.7 m parabolic primary
mirror (2.5 m effective aperture) and a 0.35 m diameter hyperbolic chopping secondary
mirror. The telescope is mounted in an open cavity in the aft section of the aircraft and
views the sky through a port-side door. The telescope is articulated by magnetic torque
motors around a spherical bearing through which the Nasmyth beam passes. The
unvignetted elevation range of the telescope is 20°–60°. The cross-elevation travel is
only ± 3° and, therefore, most of the azimuthal telescope movement required for

http://www.sofia.usra.edu/Science/index.html
https://www.sofia.usra.edu/sites/default/files/FORCAST_observations_modes.pdf
https://www.sofia.usra.edu/science/instruments
https://www.sofia.usra.edu/science/proposing-and-observing/observers-handbook-cycle-7/1-introduction/11-sofia-and-its
https://www.sofia.usra.edu/science/proposing-and-observing/observers-handbook-cycle-7/1-introduction/12-observing-aircraft


tracking is provided by steering the airplane. Thus, the flight plan is determined by the
list of targets to be observed during each flight.

The telescope feeds two f/19.6 Nasmyth foci, an IR focus for the science instruments and
a visible light focus for guiding, using a dichroic and an aluminum flat. The secondary
mirror is designed to chop at amplitudes of up to ± 5 arcmin at a frequency ≤ 10 Hz and
up to ± 10 arcmin at a rate of ≤ 2 Hz. The visible beam is fed into the Focal Plane Imager
(FPI+), which is an optical focal plane guiding camera. Independent of FPI+ are two other
optical imaging and guiding cameras, the Wide Field Imager (WFI) and the Fine Field
Imager (FFI), both of which are installed on the front ring of the telescope.

Six instruments, covering a wide range of wavelengths and resolving powers as shown in
Figure 1.1-1, are available for use on SOFIA. Two of the instruments are Facility-class
Science Instruments (FSIs), which will be maintained and operated by the Science
Mission Operations (SMO) staff.

FIFI-LS: Far Infrared Field-Imaging Line Spectrometer
An integral-field far-infrared spectrometer
 
FORCAST: Faint Object InfraRed Camera for the SOFIA Telescope
A focal plane CCD imagerd-IR camera (including its grism modes) (FSI)
 
FPI+: Focal Plane Imager
A focal plane CCD imager
 
HAWC+: High-resolution Airborne Wideband Camera + Polarimeter
A far-IR camera and polarimeter (FSI)

 
Two instruments are Principal Investigator-class Science Instruments (PSIs), which will be
maintained and operated by the Instrument Principal Investigator (PI) teams.

 
EXES: Echelon-Cross-Echelle Spectrograph
A mid-infrared high-resolution spectrograph (PSI)
 
GREAT: German Receiver for Astronomy at Terahertz Frequencies
A heterodyne spectrometer, including the seven-beam receiver array upGREAT (PSI)
 

Figure 1.1-1.



Figure 1.1-1. The resolving power ranges of the SOFIA instrument
suite.

The instrument capabilities, the available modes, and the resulting performance
specifications of the telescope are described in later sections. For the purpose of this
document, configuration refers to the setup of the telescope and instrument
whereas mode refers to observational techniques employed during operations. Common
combinations of configurations and modes are represented as selectable options within
the Unified SOFIA Proposal and observation Tool (USPOT) via individual Astronomical
Observation Templates (AOTs). Please note that this naming convention may not
necessarily be employed uniformly in external resources for the instruments, i.e. in
websites or documentation not managed by the SOFIA team.

Most of the observing time on SOFIA is open to the international astronomical community
via Guest Observer (GO) proposal calls, which are issued on a yearly basis. The first of
these proposal calls was for Early Science, for which observations were obtained in a
series of flights from May–July, September, and November 2011. The first open call for
proposals, Cycle 1, covered the period from late 2012 to the end of 2013. The current
proposal call is for Cycle 7 observations, solicited by USRA on behalf of NASA. The
observations will take place during a series of Science Flight Campaigns, each of which
will focus on a single instrument configuration, over the duration of the cycle. The
campaigns will be interspersed with aircraft maintenance and instrument commissioning.
A single Southern Hemisphere observing series is under consideration for the Cycle 7
time period during the southern winter.
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1.2   Observing on an Aircraft
The duration of each SOFIA flight is expected to be between 9–10 hours, 7–8 hours of
which will be available for observing at altitudes of 37,000–45,000 feet. FPI+ is always
available. Among the other instruments, only one will be installed on the telescope at
any time. The SMO director will determine the total number of flights dedicated to each
instrument, after consideration of the number of TAC (Time Allocation Committee)
approved proposals for each.

Proposals should request observing time in units of hours. Once a proposal has been
approved, the first stage is complete and the proposer is then expected to carry out the
detailed planning of their observations in consultation with a support scientist or, for PI
instruments, with the instrument team. This second stage of observation planning is
known as Phase II. Proposers of successful proprosals will be informed who their SMO
support scientists are and how to contact them.

On each SOFIA flight, there will be one or more seats available for Guest Observers (GOs)
or designated Co-Investigators (CoIs) of the proposals scheduled for that flight. Since
there are a limited number of seats available on each flight, the choice of proposers
given the opportunity to fly on SOFIA will be made by the SMO director according to a
number of considerations, including the complexity of the observations to be performed,
the duration of science observations for each program on the flight, and the proposal
rank.

The observations will be carried out either by members of the instrument team along
with SOFIA personnel, or solely by SOFIA personnel. The proposers on board SOFIA will
participate in the observing, and monitor the data as it is received, but will have limited
decision making abilities. For example, the proposer will be allowed to make real-time
changes to exposure times for different filters or channels. However, changing targets or
any modifications that alter the durations of flight-legs will not be allowed.

Those GOs or CoIs chosen to fly aboard SOFIA will be required to complete a flight
participation form, a medical release form, and documentation related to badging. In
addition, they will be required to participate in an Egress Training course prior to being
allowed on board the aircraft. Full details will be provided to proposers of approved
proposals during the Phase II process.
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1.2.1   Scheduling and Flight Planning
Scheduling and flight planning will be handled by the SMO staff and is not the
responsibility of the proposer. However, an understanding of the flight planning process
and the restrictions inherent to airborne astronomy may be useful in preparing a



successful proposal.

The most distinctive aspect of SOFIA flight planning is the interdependency of the targets
observed in a flight. Because the azimuthal pointing is controlled primarily by the aircraft
heading and because, in normal operations, the take-off and landing air fields are the
same, efficient flight plans must generally balance eastbound with westbound flight legs
and southbound with northbound legs. This also means that for any flight only a limited
fraction of the observing can be performed in a given region of the sky. An example of a
flight plan flown during Basic Science in May 2011 is shown in Figure 1.2-1 below. More
examples of flight plans can be found on the webpages for earlier cycles. 

Figure 1.2-1.

Figure 1-1. This is a sample flight plan flown in May 2011 during
Basic Science. The take-off and landing were both from Palmdale, CA.
Each leg is labeled with a time stamp and observing target when
appropriate. Flight legs shown in black were ''dead legs'' during which
no target was observed. The orange and yellow outlines indicate
airspace with varying degree of restrictions which add to the
complexity of designing efficient flight plans.

For the proposer this leads to several considerations:

A strong scientific case must be made for observations with rigid time constraints or
strict cadences in order to justify the restrictions they will impose on flight planning.
Because the sky distribution of targets typically proposed for SOFIA observations

https://www.sofia.usra.edu/sites/default/files/Other/Images_Media/Intro%20-%20Scheduling%203-1_0.png


(centered on the Galactic plane and certain regions of star formation, including Orion)
is highly inhomogeneous, targets in areas that complement these high-target-density
regions will allow more efficient flight planning and will likely have a higher chance ‒
for a given scientific rating ‒ to be scheduled. Consequently, it may be advantageous
for those who can choose between targets from a large source pool for their SOFIA
proposals and for those who plan to submit survey proposals to emphasize sources
from complementary regions.
For example, objects that complement the potentially popular Orion molecular clouds
include circumpolar targets or targets north of about 40° with a right ascension in a
roughly 6 to 8 hour wide window centered about 6 hours before or after the right
ascension of Orion.
The maximum length of flight legs will be determined by the need for efficient flight
plans as well as the typical requirement that SOFIA take-off and land in Palmdale,
California. In most cases, the longest possible observing leg on a given target is ~ 4
hours. Therefore, observations of targets requiring long integrations may have to be
done over multiple flights and flight legs.
Proposals may be submitted for observations for which the flight does not originate or
end in Palmdale, CA, for example, in order to conduct observations under time
constraints that require a specific flight path or that require a single flight leg in
excess of ~ 4 hours. Such proposals would be equivalent to a deployment and due to
resource requirements and the impact that this would have on flight planning, the
scientific justification must be strong. The final decision on whether to allow programs
with such a high impact on scheduling and flight planning will be made at the
Director's discretion.

Proposers are encouraged to review the Flight Planning presentation delivered by Dr.
Randolf Klein at the SOFIA User's Workshop in November, 2011. The full list of
presentations can be found on the SOFIA web site. In addition, a much more detailed
discussion of target scheduling and flight planning can be found in the Observation
Scheduling and Flight Planning White Paper.
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1.2.2   Acquisition and Guiding
SOFIA has three optical cameras for acquisition, guiding, and tracking. The Wide Field
Imager (WFI) and Fine Field Imager (FFI) are mounted on the telescope head ring. The
upgraded Focal Plane Imager (FPI+) images the focal plane of the telescope via a
dichroic and a tertiary mirror. All three imagers use 1024x1024 pixel, frame-transfer CCD
cameras.

The WFI has a 6°x6° field of view, and is expected to achieve a centroid precision of ~8''
for stars brighter than R = 9. The field of view of the FFI is 70 x 70 arcmin . It is expected
to achieve a centroid precision of ~1 arcsec for R = 11 or brighter stars. The FPI+ has an
~8 arcmin diameter field of view and is expected to provide a centroid precision of 0.05
arcsec for R = 16 (no chopping) and R = 14 (chopping) or brighter stars.

Most observers do not need to select guide stars as they will be chosen by the SMO staff.
However proposers should be aware that the guiding cannot be done on IR sources
unless they are optically bright.
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1.2.3   Observing Moving Targets
Once SOFIA achieves its nominal operating capabilities, it will be able to observe solar
system targets by (i) guiding on the object itself, (ii) offset guiding from field stars, or (iii)
predictive tracking based on accurate ephemerides.

Successful guiding on a moving target requires it to be bright at visible wavelengths,
where the guider cameras operate. We are typically able to guide on solar system
targets with R ≤ 10 and that have a non-sidereal angular speed of 1 arcsed/s or less. The
minimum acceptable solar elongation for a target is limited by the lower elevation limit
of the telescope and the rule that no observations can be acquired before sunset or after
sunrise. The minimum solar elongation is roughly 24 degrees.  

Identification of solar system targets will be done manually by the Telescope Operator by
inspecting images obtained with FPI+. The ephemerides of the proposed target must be
accurate enough to allow for unambiguous identification. While the required accuracy
could vary somewhat based on the complexity of the background star field, it should in
general be better than about 30/arcsec.
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1.2.4   Line-of-Sight (LOS) Rewinds
The SOFIA telescope mounting is similar to that of a typical altitude-azimuth telescope.
One such similarity is that while tracking a target, the image rotates within the field of
view. However, the SOFIA telescope is also similar to an on-orbit gyro-stabilized
telescope, with a third control axis along the line of sight (LOS). So the sky image in the
focal plane does not change orientation until the telescope approaches an LOS limit. 
Then the telescope must be slewed about the LOS axis to at least mid-range, or more
typically to near the opposite limit.  Each of these "LOS rewinds" interrupts observing for
~10 to 15 seconds and may have to occur several times during an observing leg. The
range of LOS rotation is limited to only ± ~3°, and the frequency of LOS rewinds depends
on the rate of field rotation. This in turn depends on the target’s current azimuth and
elevation, and weakly on the aircraft latitude. This is similar to the field rotation that
occurs at ground-based altazimuth telescopes, but the rate differs due to the aircraft
ground speed. Each target’s azimuth and elevation are unknown until the observation is
scheduled into a flight plan, and therefore the field rotation angles and rotation rate are
not available until then. The overall character of the airborne field rotation rate in the
observable sky above the aircraft is shown in Figure 1.2-2. The corresponding maximum
time between LOS rewinds is shown in Figure 1.2-3.

Figure 1.2-1.



Figure 1-2. This plot shows the rate of change in the rotation angle
(degrees/hour) as a function of target elevation and azimuth. The
rates are calculated assuming an aircraft latitude of 37° N. The
observable range of elevation angles is shown in white.

 
Figure 1.2-3.

https://www.sofia.usra.edu/sites/default/files/Other/Images_Media/OH6_LOS_rate_Intro2.png


Figure 1-3. This plot shows the time it takes for the field of view to
rotate by 6 degrees as a function of target elevation and azimuth. The
times are calculated assuming an aircraft latitude of 37° N. The
observable range of elevation angles is shown in white.

For the majority of SOFIA flights that originate in Palmdale, Figures 1.2-2 or 1.2-3 can be
used to anticipate what may occur in this regard. Targets at high northern declinations
require eastward headings, and may require quite frequent LOS rewinds. Targets near
the celestial equator are likely to have very little or no field rotation and may not need
any LOS rewind, even during a long observing leg. 

For example, during the summer months the W3 star forming region rises in the
northeast while it is in the observable elevation range (20° to 60°). On Figure 1.2-2, this
indicates field rotation rates of about -25° to -35° per hour, or roughly 6 degrees every
15 minutes as indicated on Figure 1.2-3.

When using Figures 1.2-2 and 1.2-3 to estimate the rotation of field, it is important to
bear in mind some associated caveats. In practice the time between LOS rewinds is often
a little shorter due to the need for some margin near the limits, especially if there is any
turbulence. The plotted rates were calculated for latitude North 37° and the rates are
weakly dependent on latitude. Even on local flights from Palmdale, SOFIA may make
observations in the latitude range North 20° to North 55°.

Special care must be taken when designing spectroscopic observations of extended
regions. Proposers should bear in mind that the orientation of the slit on their targets will

https://www.sofia.usra.edu/sites/default/files/Other/Images_Media/OH6_6deg_time_Intro2_0.png


change with each LOS rewind. For point sources this should not cause problems—but for
extended sources this means that after each rewind the slit will be sampling a slightly
different region of the source. In addition, there is no way to choose the orientation of
the slit on the target. However, once the likely range of rotation angle values is known,
the orientation of a spectrograph slit (e.g. in EXES) on a region can be anticipated. 

Two of the Science Instruments, FIFI-LS and GREAT, use a K-mirror to rotate the
telescope FIR image before it arrives at the detectors. This is slaved to the onboard real-
time rotation angle, so that during an observing leg the observed orientation of the FIR
image is held constant. 
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1.3   Performing Background Limited Observations
Because the sky is so bright in the infrared (IR) relative to astronomical sources, the way
in which observations are made in the IR is considerably different from the (more
familiar) way they are made in the optical. Any raw image or spectrum of a region in the
IR is overwhelmed by this sky background emission. The situation is similar to trying to
observe in the optical during the day. The bright daylight sky swamps the detector and
makes it impossible to see astronomical sources in the raw images.

SOFIA operates at altitudes above 99% of the water vapor in the atmosphere. The
average atmospheric transmission across the SOFIA bandpasses is about 80% at these
altitudes. There are however a number of strong absorption features which, even at
these altitudes, can make the atmosphere opaque. Broad band filters, such as those on
FORCAST, account for the presence of such features. However, when using high-
resolution tunable instruments such as EXES, FIFI-LS, and GREAT, it is necessary to
examine the atmospheric transmission at the wavelengths of interest in detail. This may
be done using the more general web interface to the ATRAN program that was developed
and provided to the SOFIA program by Steve Lord, or through the more instrument
specific SOFIA Instrument Time Calculator (SITE). A plot of the atmospheric transmission
seen by SOFIA in comparison to that achieved at Mauna Kea is shown in Figure 1.3-
1 below.

Figure 1.3-1.

https://atran.sofia.usra.edu/
https://dcs.arc.nasa.gov/proposalDevelopment/SITE/index.jsp


Figure 1.3-1. This is a plot showing the atmospheric transmission for
SOFIA (black) at an altitude of 41K feet and 7.3 μm of precipitable
water vapor compared to Mauna Kea (red) at an altitude of 13.8K feet
and 3.4 mm water vapor over the range of 1 ‒ 1000 μm. The
transmission was calculated using the ATRAN code with a telescope
zenith angle of 45°. and the data were smoothed to a resolution of
R=2000.

In addition to its dependence on wavelength due to the presence of absorption features,
the atmospheric transmission varies with latitude and with time of year, primarily due to
differences in the amount of water vapor. It also exhibits variations on smaller time
scales due to changes in the location of the tropopause. Full discussions of these issues
may be found in Haas & Phister 1998 (PASP, 110, 339) and Horn & Becklin 2001 (PASP,
113, 997).

The variations in atmospheric water vapor could have a significant impact on some
observations, particularly when using EXES, FIFI-LS, and GREAT or grism modes
with FORCAST. For example, GREAT observations of a line situated on the shoulder of an
atmospheric water feature could be strongly affected by water vapor variability. SITE
allows the user to specify the water vapor overburden and adjusts the time estimates
appropriately. The water vapor monitor has been installed and is currently undergoing
testing, but may not be fully functional during Cycle 7.
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1.3.1   Chopping and Nodding
In order to remove the background from the IR image and detect the faint astronomical
sources, observations of another region (free of sources) are made and the two images
are subtracted. However, the IR is highly variable, both spatially and—more importantly
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—temporally. It would take far too long (on the order of seconds) to reposition a large
telescope to observe this sky background region: by the time the telescope had moved
and settled at the new location, the sky background level would have changed so much
that the subtraction of the two images would be useless. In order to avoid this problem,
the secondary mirror (which is considerably smaller than the primary mirror) of the
telescope is tilted, rather than moving the entire telescope. This allows observers to look
at two different sky positions very quickly (on the order of a few to 10 times per second)
by tilting the secondary. Tilting the secondary between two positions is known as
chopping.

Unfortunately, moving the secondary mirror causes the telescope to be slightly
misaligned, which introduces optical distortions in the images—notably, the optical
aberration known as coma and additional background emission from the telescope that is
considerably smaller than the sky emission but present nonetheless. The additional
telescopic background mentioned can be removed by moving the entire telescope to a
new position and then chopping the secondary again between two positions. (Subtracting
the two chop images at this new telescope position will remove the sky emission but
leave the additional telescopic background due to the misalignment; subtracting the
result from the chop‐subtracted image at the first telescope position will then remove the
background.)

Since the process of moving to a new position is needed to remove the additional
background from the telescope, not the sky, it can be done on a much longer timescale.
(The variation in the telescopic backgrounds occurs on timescales on the order of tens of
sec to minutes, much slower than that the variation in the sky emission.) This movement
of the entire telescope, on a much longer timescale than chopping, is known as
nodding. The two nod positions are usually referred to as nod A and nod B. The distance
between the two nod positions is known as the nod throw.

The chop-subtracted images at nod position B are then subtracted from the chop-‐
subtracted images at nod position A. The result will be an image of the region, without
the sky background emission or the additional emission resulting from tilting the
secondary during the chopping process. The sequence of chopping in one telescope
position, nodding, and chopping again in a second position is known as a chop/nod
cycle.

Again, because the IR sky is so bright, deep images of a region cannot be obtained (as
they are in the optical) by simply observing the region for a long time with the detector
collecting photons (integrating) continuously. As stated above, the observations require
chopping and nodding at fairly frequent intervals. Hence deep observations are made by
effectively stacking a series of chop/nod images. Furthermore, IR detectors are not
perfect, and often have bad pixels or flaws. In order to avoid these defects on the arrays,
and prevent them from marring the final images, observers employ a technique known
as dithering. Dithering entails moving the position of the telescope slightly with respect
to the center of the region observed each time a new chop/nod cycle is begun, or after
several chop/nod cycles. When the images are processed, the observed region will
appear in a slightly different place on the detector. This means that the bad pixels do not
appear in the same place relative to the observed region. The individual images can then
be registered and averaged or medianed, a process that will eliminate (in theory) the bad
pixels from the final image.



Many of the instruments onboard SOFIA impliment chopping and/or nodding techniques
in order to minimize the contribution of background noise in observations; Table 1.3-1
provides the nomenclature between some of the SOFIA instruments with
similar chopping and nodding techniques. Depending on the instrument and the required
exposure time and resolution for the object being observed, other methods of
optimization may be more beneficial to the observation (Section 1.3.2).

Table 1.3-1: Inter-Instrumentation Mode Translations

Inter-Instrumentation Mode Translations
Technique EXES FIFI-LS FORCAST GREAT HAWC+

Symmetric
Chopping

 Symmetric
Chop NMC Beam

Switching NMC

  NPC   

Asymmetric
Chopping

 Bright Object    

 Asymmetric
Chop C2NC2   

  NXCAC   

Nodding Only

Nod On
Slit   

Total Power
 

Nod Off
Slit    

Dithering Only Map  Slitscan   

Continuous     OTFMAP

Modes listed under Chopping may or may not also nod and/or dither.
Modes listed under Continuous are non-discrete methods of observation for eliminating

background noise and are discussed in Section 1.3.2.
GREAT impliments chopping and nodding techniques, but is also limited by the

temperature of the receiver. See Section 7.1.2.1 for calculations.
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1.3.1.1   Symmetric and Asymmetric Chopping Techniques
Chopping can be done either symmetrically or asymmetrically. The distance between the
two chop positions is known as the chop throw.

Symmetric chopping implies that the secondary mirror is tilted symmetrically about
the telescope optical axis (also known as the boresight) in the two chop positions.
Variations of symmetric chopping techniques include the general C2 and C2N
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techniques, with variations known as NMC (Nod Match Chop) and NPC (Nod Perp
Chop). Symmetric chopping modes use the standard ABBA nod cadence, as described in
Section 1.3.1.1a below.

Asymmetric chopping means that the secondary is aligned with the telescope
boresight in one position, but is tilted away from the boresight in the chop position. A
variation of the basic asymmetric chop mode is C2NC2. Asymmetric chopping modes use
an ABA nod cadence, as described in Section 1.3.1.1b. 

Figure 1.3-2.

Figure 1.3-2.

 

 
 

Figure 1.3-3.

https://www.sofia.usra.edu/sites/default/files/Other/Images_Media/Symmetric_vs_Asymmetric%20Chopping.png


Figure 1.3-3. A simple AB nod cadence involves (1) an exposure at
position A, (2) a move to position B, (3) an exposure at position B, and
(4) a move back to position A. The ABBA nod cadence: (1) an
exposure at position A, (2) a move to position B, (3) two exposures at
position B, (4) move back to position A, and (5) a final exposure at
position A.
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1.3.1.1a   Symmetric Chopping Variations
The shared characteristic of symmetric chopping methods is the symmetric chop about
the optical axis of the telescope. NMC and NPC differ in their nodding techniques. Note
from Table 1.3-1 that NMC is referred to as Asymmetric Chop for FIFI-LS, Beam Switching
for GREAT, and NMC for both HAWC+ and FORCAST.

The Nod Match Chop observing pattern is defined by the two alternating positions of the
telescope: Nod A and Nod B.

The telescope begins with its boresight centered at a position, Nod A. The secondary
mirror then alternates (chops) between a position on the target (position Chop A) and a
position equidistant from and on the opposite side of Nod A (position Chop B). The
distance between Chop A and Chop B is called the chop throw. The chop angle is the
direction between Chop A and Chop B from east-of-north in sky coordinates (or
counterclockwise from the top of the array in array coordinates).

The telescope then shifts to center its boresight on a new position (Nod B). The distance
between Nod A and Nod B is called the nod throw, and it is equivalent to the chop throw
—hence the name Nod Match Chop. The nod throw is always 180 degrees from the chop
angle.

The process that occurs at position Nod B is similar to that which occurred at Nod A: the
telescope’s secondary mirror alternates between a position centered on the target (Chop
A’, which is equivalent to Chop A) and a position equidistant from Nod A on the opposite
side of Nod A (position Chop B).

The observations occur in a standard ABBA nod sequence. The final image generated by
subtracting the images obtained for the two chop positions at nod A and those at nod B
and then subtracting the results will produce three images of the star, one positive and

https://www.sofia.usra.edu/sites/default/files/Instruments/Other_Instruments/Images_Media/OH6_chop_geometry_FIFILS.jpeg


two negative, with the positive being twice as bright as the negatives.

In the case of NPC, the nod is perpendicular to the chop. The telescope is offset by half
the nod throw from the target in a direction perpendicular to the chop direction, and the
secondary chops between two positions. The nod throw usually (but not necessarily) has
the same magnitude as the chop but is in a direction perpendicular to the chop direction.
This mode also uses the standard ABBA nod cadence. The final image is generated by
subtracting the images obtained for the two chop positions at nod A and those at nod B
and then subtracting the results; it will therefore have four images of the star in a
rectangular pattern, with the image values alternating positive and negative. Unlike
NMC, each beam in NPC has the same relative intensity.

Figure 1.3-4.



Figure 1.3-4. NMC vs NPC
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1.3.1.1b   Asymmetric Chopping Variations

https://www.sofia.usra.edu/sites/default/files/Other/Images_Media/NMC%20vs%20NPC.png


In C2NC2 (known as Asymmetric Chop in FIFI-LS observations), the telescope is first
pointed at the target (position A). In this first position, the secondary is aligned with the
optical axis (or boresight) for one observation and then is tilted some amount (often 180–
480 arcseconds) for the second (asymmetrically chopped) observation. This is an
asymmetric C2 mode observation. The telescope is then slewed some (usually large)
amount away from the target to a sky region without sources (position B), and the
asymmetric chop pattern is repeated. C2NC2 observations are taken as a series of 8 (C2)
files in the sequence A B A A B A A B, i.e. an ABA nod cadence with dithering to remove
correlated noise. Again, the time between slews is typically 30 sec. This mode is
particularly useful for large extended objects, smaller objects that are situated within
crowded fields, or regions of diffuse emission with only limited sky positions suitable for
background removal.

Figure 1.3-5.

Figure 1.3-5.

Figure 1.3-6 demonstrates how a C2NC2 observation might be designed for a large,
extended object. It is immediately apparent from the figure, that C2NC2 has an efficiency
of only ~20%. This is a much lower efficiency than either symmetric chopping variations
since only a single chop position out of a full chop/nod cycle is on source. This should be
taken into consideration when designing science proposals.

Figure 1.3-6.

https://www.sofia.usra.edu/sites/default/files/Other/Images_Media/Asymmetric%20Chop%20with%20Offset%20Nod.png


Figure 1.3-6. A sample C2NC2 observation design for a large,
extended object. Each source position (solid line) and its associated
asymmetric chop position (dashed line) have matching colors. Each
source position has an independent chop configuration, the
parameters for which are given in the dashed line boxes (chop angle
in degrees and chop throw in arcseconds). After a full chop cycle at
each position, the telescope is slewed to a location off of the source,
shown in black and labeled with the coordinates (600, 600). The chop
throw and angle at that position is the same as it is for the source
position to which it is referenced (not shown in the figure).

The Asymmetric Chop mode of FIFI-LS typically impliments an ABBA nod sequence, but is
otherwise equivalent to C2NC2. NXCAC (Nod not related to Chop with Asymmetric Chop)
mode is the FORCAST grism version of C2NC2.

Bright Object mode for FIFI-LS is also an asymmetric chopping mode, using observations
of two map positions and one off-position per nod-cycle through an asymmetric chop.
This technique is utilized to improve the efficiency of mapping bright objects, where the
total observing time is dominated by telescope movements.
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1.3.2   Alternatives to Chop-Nod Cycles
As chopping and nodding require a considerable amount of an observation's awarded
time spent off-source, the amount of exposure time observing on the target is limited
and subject to large observational overheads waiting for the telescope and/or secondary
mirror assembly to complete chop/nod/dither movements. An alternative is to impliment
continuous scanning techniques. Of the instruments currently offered on SOFIA, only
GREAT, HAWC+, and FPI+ offer continuous scanning methods of observation. 

Nodding Only Modes 

GREAT 
Total Power - The telescope alternates between the target and a nearby reference
position that is free of emission, using ON–OFF source cycles (typically spending ≤
30 seconds on source). This mode is used when observing an extended source or a
crowded region.
 
EXES
Nod On Slit - The telescope is nodded along the slit at distances that keep the
target within the slit length. The nod throw is half the slit length. This is the most
efficient EXES mode for point sources.

 
Nod Off Slit - The telescope is nodded such as that the object is not on the slit. This
is used for extended sources or when the PSF is larger than four times the slit
length.

 
Dithering Only Modes 
 

EXES
Map - The telescope is moved perpendicular to the slit while EXES takes spectra on
a grid of telescope positions, which are always one dimensional stripes. 

 
FORCAST
Slitscan - In Slitscan mode, the slit is moved across a target in discrete steps using
dithers perpendicular to the slit axis to yield a spectroscopic map of an entire area
of sky.

 
Continuous Scans
 

HAWC+
On The Fly Mapping (OTFMAP) - In this case, scan rates must reach (~2 Hz) x
(HAWC+ beam width) in order to remove the source from the atmospheric
background—implying rates of ~10–80 arcseconds per second depending on the
bandpass. HAWC+ offers two scan types for OTFMAP scan patterns: Lissajous and
Box. In Lissajous observations, the telescope follows a parametric curvature at a
non-repeating period to eventually cover the scan amplitude. In contrast, Box scans
drive the telescope in a linear fashion at a specified rate in one direction for a given
length and then moved perpendicularly before scanning in the reverse direction—
similar to how one would mow a very large lawn. Lissajous scans are recommended
for soucres smaller than the HAWC+ FOV at a given bandpass, while Box scans are



more efficient at mapping large areas several times the FOV. 
 

Note: GREAT also has an On the Fly Astronomical Observation Template (AOT), but
is not included in this section because GREAT observations are performed in either
Total Power or Beam Switching modes.

 
Other Scans
 

FIFI-LS
Spectral Scan - This mode is implimented to target spectral features much wider
than the bandwidth like solid state features. The problem is a good atmospheric
calibration over the whole observed wavelength range. The spectrum has to pieced
together from many different exposures. The best way to take such data and how to
reduce it is still being investigated. If this observing mode is considered, please
contact the instrument scientist via the SOFIA Help-Desk.
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2.1   Specifications
2.1.1   Instrument Overview
The Echelon-cross-Echelle Spectrograph (EXES) operates in the 4.5–28.3 μm wavelength
region, at high (R ≈ 50,000–100,000), medium (R ≈ 5000–20,000) and low (R ≈ 1000–
3000) spectral resolution. The instrument uses a 1024x1024 Si:As detector array. High



resolution is provided by an echelon—a coarsely-ruled, steeply-blazed aluminum
reflection grating—along with an echelle grating to cross-disperse the spectrum. The
echelon can be bypassed so that the echelle acts as the sole dispersive element. This
results in single order spectra at medium- or low-resolution depending on the incident
angle.
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2.1.1.1   Design
EXES is a liquid helium cooled instrument. The cryostat is approximately 24 inches in
diameter and 72 inches long. There are two cryogen reservoirs: one for liquid nitrogen
and one for liquid helium. These are at the forward end, as mounted on SOFIA, with the
entrance window on the aft end toward the telescope. There are three layers of radiation
shielding within EXES: a vapor cooled shield tied only to the cryogen fill tubes, one
attached to the liquid nitrogen reservoir, and the third attached to the liquid helium
reservoir. All optics except for the entrance window/lens are attached to the liquid helium
level. Baffling tubes connected to the liquid nitrogen level reduce thermal emission
impinging on the internal optics. Within the liquid helium level, the optics are all tied to a
rigid optics box constructed out of aluminum and the detector headerboard is isolated
with G10 fiberglass and is actively maintained at a uniform temperature.
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2.2.1   Performance
EXES delivered performance appears consistent with expectations over the flight series
so far. There are some variations from observation-to-observation, but we believe the
values quoted here are fair estimates of what is typical. The angular resolution of EXES
will match that achieved by the telescope. For the latest sensitivities, observers are
recommended to consult the SOFIA Instrument Time Estimator (SITE). SITE also provides
the slit length as a function of wavelength and instrument configuration (and therefore
whether on-slit nodding is possible or not), as well as the wavelength coverage in a
single setting and echelon orders that can be targeted.

The wavelength coverage ranges from 4.5–28.3 μm. There are three resolution regimes
—high, medium and low—with the exact resolving power depending on wavelength,
grating angle and slit width. Generally, the resolution will be higher at shorter
wavelengths in each regime. The high-resolution configurations use the echelon grating
and will achieve R = 50,000–100,000. If the cross disperser echelle angle is 35–65°, the
configuration is called HIGH_MED and if 10–25° it is called HIGH_LOW. For these high-
resolution configurations, there is non-continuous spectral coverage in high-resolution
configuration for λ > 19 μm, but the central wavelength can be tuned so that lines of
interest do not fall in the gaps. The Medium configuration will use high angles on the
echelle grating to achieve R = 5,000–20,000, and the LOW configuration will use low
angles to achieve R = 1,000–3,000.

The HIGH_MED configuration slits are 4.5–45 arcsec long, and the HIGH_LOW slits are 1–
12 arcsec long. The shorter slits in HIGH_LOW allow for more orders to be packed onto
the array, thus increasing the instantaneous wavelength coverage, while maintaining the
high spectral resolution (see Figure 2-6 for an example). In the Medium and Low
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configurations the slit lengths vary from 25 to 180 arcsec depending on the number of
rows to be read out.

The sensitivity of the instrument is shown in Figures 2-1 through 2-4 for the HIGH_MED,
Medium, and Low configurations for both point sources and extended sources. The Noise
Equivalent Flux Density for S/N of 10σ in a clock-time (Note that the other instruments in
this Handbook report sensitivities based on the total time on-source, not the clock-time.
The latter includes the total time on-source + applicable overheads, excluding target
acquisition and instrument set-up time.) of 900 seconds is plotted as a function of
wavelength. These values have been calculated for a point source assuming image
quality between 2 and 4 arcsec (FWHM) and the narrowest of the available 1.4 to 3.2
arcsec slits, both of which vary with wavelength, and take into account estimated
instrument efficiency. They assume an altitude of 41,000 feet, 40° elevation, and 7 μm
precipitable water vapor.

Figure 2-1.



Figure 2-1. The minimum detectable point source flux as a function
of wavelength for the EXES HIGH_MED (top) and HIGH_LOW (bottom)
configurations, assuming the conditions mentioned above. It takes
into account that on-slit nodding is not possible at all wavelengths.
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The vertical dotted lines show the boundaries between the slit widths
used (1.4", 1.9", 2.4", 3.2"). For precise numbers at individual
wavelengths and for the HIGH_LOW configuration please use the
SOFIA Instrument Time Estimator (SITE).
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2.1.2.1   Optics
The optics consist of an entrance window/lens, fore-optics, three wheels housing the slits,
deckers and filters, an echelon chamber, and a cross-dispersion chamber. The entrance
window/lens (2 inches diameter) forms an image of the SOFIA telescope secondary at the
liquid helium cold stop within the fore-optics. The fore-optics, including the entrance
window, changes the incoming f/19 beam to f/10. After coming to a focus, the beam
expands through a pupil (at the cold stop) to an ellipsoidal mirror. The light is redirected
off two flat mirrors to a focus at the slit plane.

As the beam comes to a focus, it passes through the slit/filter cassette. This consists of
three wheels on a common axle containing (i) filters to isolate grating orders, (ii) deckers
to determine the length of the slit, and (iii) slits of different widths. The filter wheel has
12 slots that will be loaded with specific filters for each cooldown cycle based on the
planned observations. Broader filters for use in the Low resolution configuration are
included in four of the decker wheel slots. The decker wheel has a total of 11 features,
which include continuously variable length slits, fixed length slits, pinholes, and an open
position. The continuously variable slit length is provided by a cutout on the decker
wheel that gets larger as a function of angle. The smallest size is about 4.5 arcsec and
the largest about 45 arcsec. The slit length depends on the wavelength and the
instrument configuration. With that caveat, slit lengths can range from 1 to 180 arcsec
on SOFIA.The slit wheel contains six slits. On SOFIA, EXES will typically use four of them
(Table 2-1). There is also a wide 9.400 slit intended for flux calibration.

Table 2-1: Observing Configurations, Modes, Slits, and Spectral Resolutions

Observing Configurations, Modes, Slits, and Spectral Resolutions

Configuration Available Modes Available Slit Widths
(arcseconds)

Resolving
Power

HIGH_MED nod on slit , nod off
slit, map

1.4 112,000

1.9 86,000

2.4 67,000

3.2 50,000

1.4 112,000

1.9 86,000

a

b

c
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HIGH_LOW nod off slit, map

2.4 67,000

3.2 50,000

Medium nod on slit, nod off
slit, map 1.4, 1.9, 2.4, 3.2 5,000-

20,000

Low nod on slit, nod off
slit, map 1.4, 1.9, 2.4, 3.2 1,000-3,000

Configuration Available Modes Available Slit Widths
(arcseconds)

Resolving
Power

 1.400 slit unavailable >12 μm, 1.900 slit unavailable >16 μm, 2.400 slit unavailable
>21 μm
 Observers must check the most recent resolving powers as a function of slit width and

wavelength on SITE 
 On-slit nodding not possible at all wavelengths. Observers must check this on SITE 
 Resolving power is a strong function of wavelength and slit width

After passing through the slit wheel, the beam hits a flip mirror mechanism, which is
used to choose between instrument resolution configurations (Table 2-1) by either
directing the beam into the echelon chamber (high-resolution) or into the cross-
dispersion chamber (medium- and low-resolution). In the high-resolution configuration,
the beam enters the echelon chamber and expands to an off-axis hyperboloid mirror that
serves as both collimator and camera mirror for the echelon grating. The dispersed light,
focused by the hyperboloid, bounces off a flat into the cross-disperson chamber.

The cross-dispersion chamber is conceptually similar to the echelon chamber. The light
expands from the input to an off-axis paraboloid that again serves as both collimator and
camera mirror. The collimated beam is sent to the cross-dispersion grating which
disperses the light in the plane of the grating. The camera mirror sends the light to our
detector. When operating in single-order, long-slit spectral configurations—our Medium
and Low resolution science configurations—the light never enters the high-resolution
echelon chamber.

There is a wheel in front of the detector, which provides a lens for imaging the pupil
through the instrument, and a dark slide for isolating the detector. The wheel would also
be available for including transmissive optics to adjust the plate scale on the detector, if
desired.
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2.1.2.2   Detector
The detector is a Raytheon Vision Systems Si:As array with 1024x1024 pixels. The
detector material is bonded to a SB 375 multiplexer. The array is mounted in a separate
enclosure to reduce scattered light. The headerboard is thermally isolated from the rest
of the optics box to permit active temperature control of the array. The photon fluxes in
the Low configuration will be significantly above the level intended for the array. This

d
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prevents observations at longer wavelengths and/or with wider slits. When photon fluxes
allow, only a subsection of the array will be clocked out in this configuration for a faster
read-out (as well as in any imaging configuration). It is expected that a quarter to half
the array will be utilized in these configurations, so the effective slit length is about 60''.
There are other potential work-arounds that reduce the instrument sensitivity and may
require extra overheads to prepare for and recover from low resolution observations.
Proposers interested in low resolution observations should contact the instrument team
to discuss their goals and possible options.
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2.2 Planning Observations
Table of Contents

2.2   Planning Observations
2.2.1   Wavelength Calibration
2.2.2   Flux Calibration and Atmospheric Line Correction
2.2.3   Overheads
2.2.4   As a Principle Investigator Instrument

Return to the Table of Contents for this section at any time by selecting Return to Table
of Contents. Users may also navigate through the entire Observer's Handbook by using
the complete Table of Contents menu to the right.

2.2   Planning Observations

All EXES configurations and modes are released for observations. The observing modes
for EXES are summarized as follows:

Nod On Slit
The telescope is nodded along the slit at distances that keep the target within the
slit length. The nod throw is half the slit length. This is the most efficient EXES mode
for point sources.
 
Nod Off Slit
The telescope is nodded such as that the object is not on the slit. This is used for
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extended sources or when the PSF is larger than four times the slit length.
 
Map
The telescope is moved perpendicular to the slit while EXES takes spectra on a grid
of telescope positions, which are always one dimensional stripes. 
 

Observers are always encouraged to contact the instrument team for the latest
performance results—especially for the Low configuration, which suffers from saturation
effects. There are potential work-arounds that reduce the instrument sensitivity and may
require extra overheads to prepare for and recover from low resolution observations.
Proposers interested in low resolution observations should contact the instrument team
ready to discuss their goals and hear about possible options.
 
The proposer needs to supply the central wavelength, the spectroscopic configuration,
the slit width, and the observing mode for each observation (Table 2-1). These
parameters define the default instrument set-up. Each central wavelength specified
should count as a separate observation. In addition, the proposer should estimate the
clock time necessary to reach the desired S/N.

Figure 2-2.
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Figure 2-2. The minimum detectable point source flux as a function
of wavelength for the Medium (top) and Low (bottom) configurations,
assuming the conditions mentioned at the end of Section 2.1.2. The
vertical dotted lines show the boundaries between the slit widths used
(1.4", 1.9", 2.4", 3.2").
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The calculation may be based on Figure 2-1 or 2-2 for point sources and on Figure 2-3
and 2-4 for extended sources, noting that the minimum detectable flux ∝ (S/N) / √(t ).
However, it is recommended that the SOFIA Instrument Time Estimator (SITE) is checked
as well for the latest updates.

Figure 2-3.

Figure 2-3. The minimum detectable extended source flux as a
function of wavelength for the HIGH_MED and HIGH_LOW
configurations (using off-slit nodding).

EXES operates in a wavelength region, parts of which are accessible from ground based
telescopes. Proposers should carefully check the atmospheric transmission (using
ATRAN, for example) and make sure that the observations require, or would greatly
benefit from, using SOFIA. The proposer should take into account the Doppler shift of the
target(s) due to their motion relative to Earth. If proposers find that the atmospheric
transmission at the wavelength of interest is lower than the local median (calculated
over a range ± 0.0125 μm), then more time will be required to reach the desired S/N.
Higher transmission would imply shorter required times. In general, the S/N scales as
transmission/√((1 - transmission) + 0.3). Note that SITE includes the impact of the
atmosphere at precise wavelength of interest and so may differ from the figures above.
SITE provides the clock-time required to achieve the desired S/N per resolution element
on a continuum object at the specific wavelength of interest and then indicates what the
expected S/N should be for the entire setting.

Proposers should specify the slit width, which sets the resolving power for each
configuration (Table 2-1). Note that the narrowest slit (1.4 arcsec) is only effective below
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12 μm (above this wavelength no gain in resolving power is achieved, while flux is lost
with respect to the wider slits). Similarly, the 1.9 arcsec slit can only be used below 16
μm, and the 2.4 arcsec slit below 21 μm.

Figure 2-4.

Figure 2-4. The minimum detectable extended source flux as a
function of wavelength for the Medium (top) and Low (bottom)
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configurations, assuming the conditions mentioned at the end of
Section 2.1.2. The vertical dotted lines show the boundaries between
the slit widths used (1.4", 1.9", 2.4", 3.2").

In configurations using the medium resolution grating (Medium and HIGH_MED), the
single setting spectral coverage ranges between 0.03 μm at the shortest wavelengths,
and 0.3 μm at longer wavelengths (Figure 2-5). For the low resolution grating (the LOW
and HIGH_LOW configurations) this is 0.2–0.8 μm. Note that while HIGH_LOW and
HIGH_MED have the same spectral resolution, the larger wavelength coverage of
HIGH_LOW comes at the expense of a smaller slit length, which is illustrated in Figure 2-
6.

Figure 2-5.

Figure 2-5. The single setting spectral coverage as a function of
wavelength. Note that these values are the same for the HIGH_MED
and Medium configurations, and for the HIGH_LOW and Low
configurations.

Proposers should choose a single line of interest for each observation. Fine tuning of the
bandpass to observe lines at the extreme edges of a single setting should be done in
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consultation with the EXES team to see if existing data indicates such tuning is possible.

The slit orientation on the sky depends upon the time when the target is observed and
therefore the position angle cannot be specified.

Figure 2-6.

Figure 2-6. Comparison of raw 2D spectra of EXES in the HIGH_MED
(left) and HIGH_LOW (right) configurations obtained during
commissioning flights. The spectra are not nod-subtracted,
highlighting the sky emission lines (dark). This comparison shows that,
while the HIGH_MED and HIGH_LOW configurations have the same
spectral resolution, HIGH_LOW has a much larger spectral coverage at
the expensive of a shorter slit to be able to pack more orders on the
array. In contrast, the Low and Medium configurations (not shown)
have the same spectral coverage as HIGH_LOW and HIGH_MED,
respectively, but a lower spectral resolution without cross dispersion.
The approximate start and end wavelengths are indicated in red.

EXES will not use the secondary for chopping in any of its observations. Rather, only
nodding and mapping modes will be implimented.

In a nod mode (either Nod On Slit or Nod Off Slit), the telescope is moved to a new
position in order to remove the sky background. For point sources observed with a
sufficiently long slit, the telescope is moved such that the object remains on the slit (Nod
On Slit mode). For sources larger than about a quarter of the slit length, the telescope is
moved such that the object is not on the slit (Nod Off Slit mode). The time between
telescope motions will depend on the sky variation, the telescope settling time, and the
integration time. The goal is to maximize the signal-to-noise per clock time. For
observations of point sources, the detectable flux plots (Figures 2-1 and 2-2) and SITE
include assumptions regarding whether nodding off the slit is required due to short slit
lengths. For nodded observations of extended objects, proposers should contact the
EXES team to check if nodding on the slit is possible. If not, the observing time required
should be doubled. Unless specific nod parameters are requested for such observations,
the instrument team will define the nod amplitude, direction, and frequency. The
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sensitivities for extended source observations shown in Figures 2-3 and 2-4 assume that
the source is nodded off-slit and take into account the variation in spatial resolution with
wavelength. The atmospheric and overhead factors for nodding are included. If the
source is small relative to the slit length, then it may be possible to nod along the slit. In
this case, the source brightness given in the figures is for a SNR of 10 in 450 seconds.

In Map mode, the telescope is moved sequentially such that a series of positions along
straight lines on the sky (i.e. along stripes) are observed to create a map. The sky
background is taken from the first positions and, depending on the size of the map, from
the last positions. In general, we anticipate the telescope motions to be half the slit width
to create a well-sampled map. Proposers should specify the number of steps in a map
and the step size. Map steps are generally assumed to be perpendicular to the slit. The
first three positions for taking data in a map must be blank sky. These could be the first
three positions of the map or at a separate sky offset position specified by the user. It is
recommended that additional blank sky positions are observed at the end of the map on
the other side of the object. For all maps, the instrument software returns to the sky
offset position for three final sky observations at the end of the observation. Proposers
should specify the required clock time based on the flux limit desired, using the values in
Figures 1-3 and 1-4, including any assumptions regarding binning of map positions to
yield the final required SNR. The SNR for a single map position can be estimated by
assuming that the required time is similar to that for nodding an extended object on slit,
i.e. 10σ in 450 seconds for a given source brightness. If any spatial binning is required—
at least a two-step sum is recommended—then the SNR will improve by the square root
of the number of steps in the sum. SITE allows the user to specify the number of steps
and bins according to the predicted image quality in producing a clock-time estimate.
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2.2.1   Wavelength Calibration
Wavelength calibration with EXES will be performed by applying the grating equation to
atmospheric lines observed in the source spectra. As long as there is a single telluric
feature in the bandpass with depth of at least 5%, the wavelength calibration is expected
to be accurate to ≅ 0.5 km s .

If atmospheric models show no telluric features within the EXES instantaneous band pass
for a given observation, then obtaining a good wavelength solution will require a few
additional steps. Note that the absence of telluric features from SOFIA suggests the
observation may be better done from the ground. First, the order sorting filter (OSF) is
rotated so that a different order from the echelle is observed that includes a suitable
telluric line. The grating equation can then be applied, providing wavelength calibration
accuracy down to ≈ 1 km s . The process of rotating the OSF, observing blank sky, and
rotating the OSF back to the original orientation should take less than 5 minutes of
additional time. A demonstration of this procedure can be found in Harper et al. (2009,
ApJ, 701, 1464).
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2.2.2   Flux Calibration and Atmospheric Line Correction
For every EXES science observation, the EXES temperature-controlled black body source
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and a nearby blank sky field will be observed. From these, a calibration spectrum will be
constructed that will correct for response variations and provide flux calibration after
division over the science observations. In principle, division by the calibration spectrum
would also correct for telluric absorption lines (see Lacy et al., PASP volume 114, issue
792, p. 153), but this is presently not the case because of the large difference between
the blackbody and sky temperatures. The flux calibration is expected to be better than
20% but the true accuracy is currently uncertain. Experiments focused on line profile
information and those that can normalize the continuum level (or use past observations
for setting the continuum) will likely be more successful. Projects requesting a telluric
calibration object, in particular those observing lines near strong telluric features or
those observing relatively broad lines, will need to include the observation time required
in their proposal. Because of the difficulty of scheduling a given telluric calibrator with
the science target in a given flight, the specific calibrator will need to be chosen at the
time of flight planning in consultation between the program proposer, the instrument PI,
and the SMO support scientist. For wavelengths below 8–10 μm this will most likely be a
hot, bright star (e.g., Vega or Sirius) and at longer wavelengths an asteroid. Galilean
moons will also be considered, provided they are well separated from Jupiter. For the
proposal, a separate observation entry should be entered via USPOT with name
Cal_target where target is the name of the associate science target (e.g., IRC+10216
and Cal_IRC+10216) and given the coordinates RA:00:00:00, Dec:+00:00:00. The
observing time for such a telluric standard observation will depend on the instrument
configuration and wavelength observed as well as on the signal-to-noise level needed.
Proposers must use SITE to estimate this, assuming a continuum brightness of 100 Jy
below 10 μm and 150 Jy above 10 μm for the HIGH_MED and HIGH_LOW configurations.
For the Medium and Low configurations the proposer should assume at all wavelengths a
brightness of 50 Jy and 25 Jy, respectively. Proposers are urged to limit the EXES clock
times on the telluric standard at a given wavelength and instrument configuration to less
than about 30 minutes. Further improvement of the removal of telluric absorption
features may be achieved by employing models of the Earth's atmospheric transmission.
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2.2.3   Overheads
The treatment of overheads for EXES differs from that of most other SOFIA instruments:
instead of on-source times, users are required to specify wall clock times (i.e. total
elapsed time) in USPOT, which is the on-source time plus all overheads except those
related to acquisition and instrument set-up. The overheads include time on empty sky in
the off-slit nodding and mapping modes as well as read-out and other telescope and
instrument inefficiencies. SITE and the figures in this manual give the clock times
needed. The figures in this manual only give clock times. USPOT will add an additional 15
minutes for peak-up, wavelength optimization, flux calibration, and flat field overheads in
the HIGH_MED, Medium, and Low configurations and 20 minutes in HIGH_LOW. In all
configurations, an extra 3 minutes of peak-up time is needed for the narrow (1.4 arcsec)
slit. If no peak-up is necessary (i.e., after a wavelength change on the same target, if the
source is extended, or if the continuum emission is too weak), the overheads can be
reduced by using the No Peak-Up option in USPOT. Overheads can also be reduced if
multiple sky positions are observed in the same wavelength setting. In this case, click
the No Wavelength Setup button in USPOT. Note that the time on a given target on a
single flight is limited to 90–180 minutes, so full overheads may be needed again once
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the sum of AOR times exceeds 90 minutes. Conversely, if a single observation takes
more than 90 minutes it may need to be split into multiple AORs, each with full
overheads. Please consult the EXES and SOFIA staff in these cases.
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2.2.4   As a Principle Investigator Instrument
EXES is a Principal Investigator (PI) class instrument. The proposer is encouraged (but
not required) to contact the Instrument PI before preparing or submitting the proposal,
since the PI has the most up to date information about the instrument capabilities.
However, it is recommended that they do so, in order to get the most up to date
information about instrument capabilities. The data collection and reduction will be done
by the instrument team, and it is expected that data analysis and preparation of the
results for publication will be done by the proposers in collaboration with the instrument
team.
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3.1.2.3   Sensitivity
Return to this Table of Contents at any time by selecting Return to Table of Contents.
Users may also navigate through the entire Observer's Handbook by using the complete
Table of Contents menu to the right.

3.1   Specifications
3.1.1   Instrument Overview
The Far Infrared Field-Imaging Line Spectrometer (FIFI-LS) is an integral field, far infrared
spectrometer. The instrument includes two independent, simultaneously operating
grating spectrometers sharing one common field-of-view (FOV). Each spectrometer has a
detector consisting of 400 pixels of Germanium Gallium-doped photoconductors. The
short wavelength spectrometer (blue channel) operates at wavelengths between 50 μm
and 125 μm, while the long wavelength spectrometer (red channel) covers the range
from 105 μm up to 200 μm. One of two dichroics has to be selected for an observation
affecting the wavelength range of both channels in the overlap region.

The projection onto the sky of the 5x5 pixel FOVs of both channels is concentric (10
arcsec offset), but the angular size of the FOVs differs. The red channel has a pixel size
of 12x12 arcsec yielding a square 1 arcmin FOV  and the blue channel has a pixel size of
6x6 arcsec, which yields a square 30 arcsec FOV.

The resolving power of both channels varies between 1000 and 2000 dependent on the
observed wavelength. The higher values are reached towards the long wavelength ends
of each spectrometer.

The detectors are cooled down to about 1.7 K with super fluid helium. The spectrometers
and all mirrors are cooled down to 4 K with liquid helium. The exception is the entrance
optics featuring a K-mirror (see Section 3.1.1.3) and an internal calibration source. These
optical components are cooled to about 80 K with liquid nitrogen.
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3.1.1.1   Integral Field Concept
The integral field unit (IFU) allows FIFI-LS to obtain spectra at each point in its FOV; this is
in contrast to a spectrometer with a slit, which only provides spectra along the slit. Both
channels in FIFI-LS have an IFU, which consists of 15 specialized mirrors to separate the
two dimensional 5x5 pixel FOV into five slices (of five pixels length each) which are then
reorganized along a (one dimensional) line (25x1 pixel). This line forms the entrance slit
of the actual spectrometer. The diffraction grating disperses the incoming light in the
spectral dimension. Finally the dispersed light reaches the 16x25 pixel detector array.
The result is a data cube with 5x5 spatial pixels (spaxels) and 16 pixels in the spectral
dimension. Figure 3-1 shows the concept.

Figure 3-1.



Figure 3-1. Illustration of the field imaging concept in FIFI-LS. The
optics slice the rows of the 5x5 pixel field of view into a 25x1 pixel
pseudo slit.

Return to Table of Contents

3.1.1.2   Selection of the Dichroic
The two channels have an overlap in their wavelength range. That is necessary because
a dichroic splits the light between the two channels allowing the common FOV for both
channels. The drawback is that a dichroic has a transition region where neither the
transmission nor the reflection is good. Thus, FIFI-LS has two dichroics with transitions at
different wavelengths. The The D105 cuts off the blue channel at about 100 μm and
opens the red at about 115 μm. The D130 cuts off the blue channel at 120 μm and opens
the red at 130 μm. Figure 3-2 should be used to choose the best dichroic and line
combinations. The proposer needs to pair up wavelengths so that each pair can be
observed efficiently with one of the dichroics. Typically, the D105 is used unless a
wavelength between 100 and 115 μm is observed.

Figure 3-2.
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Figure 3-2. Throughput of optical system—here the transmission of
the overall optical system is shown for the six possible optical
configurations using two dichroic beam splitters (D105 and D130) and
both grating orders (blue channel only).
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3.1.1.3   Beam Rotator
The SOFIA telescope is essentially an Alt-Az-mounted telescope. Thus, the field of view
on the sky rotates while tracking an object. However, the telescope can rotate around all
three axes, but the amount it can rotate in cross-elevation and line-of-sight is limited.
Thus, the normally continuous sky rotation is frozen-in for some time while the telescope
is inertially stabilized. When the telescope reaches its limit in line-of-sight rotation, it
needs to rewind, resulting in a rotated FOV of the telescope.

FIFI-LS has a beam rotator (K-mirror) that rotates the instrument's FOV, counteracting the
sky rotation experienced by the SOFIA telescope. When a rewind happens, the FIFI-LS
beam rotator will automatically rotate the FOV of the instrument, so that the position
angle of the instrument's FOV on the sky is maintained. An additional benefit is that the
beam rotator enables the observer to line up the FOV with e.g. the axes of a galaxy and
keep the alignment. The desired position angle of the FOV can be specified in Phase II of
the proposal process.
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3.1.2   Performance
3.1.2.1   Comparison with the PACS Spectrometer
The FIFI-LS design is very similar to the Herschel/PACS-spectrometer sharing much of the
design. The detectors are basically the same and the optical design is very similar (same
sized gratings in Littrow configuration, same IFU). The difference is that FIFI-LS features
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two grating spectrometers whereas the PACS-spectrometer had only one. The two
gratings make it possible to observe two different wavelengths simultaneously and
independent of each other (one in each channel). This design also allows different pixel
sizes (6 arcsec vs 12 arcsec) in each spectrometer, which means a better match to the
beam size. The spectral range of FIFI-LS also goes down to 51 μm whereas PACS did not
routinely observe the [OIII] 52 μm line.
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3.1.2.2   Spectral Resolution
The blue spectrometer operates in 1  and 2  order. An order-sorting filter blocks the
unwanted order. The red spectrometer only operates in 1  order. The spectral resolution
of FIFI-LS depends on the observed wavelength. It ranges from R = λ/Δλ ~500 to 2000.
That corresponds to a velocity resolution of 150 to 600 km/s. The top panel of Figure 3-3
shows the spectral resolution in velocity resolution and in R vs. wavelength as measured
in the lab.

FIFI-LS has 16 pixels in the spectral direction. The wavelength range covered by these 16
pixels also depends on the observing wavelength. The bottom panel of Figure 3-3 shows
the instantaneous spectral coverage or bandwidth (BW) in micron.

Figure 3-3.
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Figure 3-3. Top, The spectral resolution in km/s and λ/Δλ for both
channels; Bottom, The instantaneous wavelength coverage in km/s of
the 16 spectral pixels vs. wavelength.
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3.1.2.3   Sensitivity
FIFI-LS will operate such that the detectors are always background-limited, infrared
photodetectors. Under this assumption, the overall performance of FIFI-LS as a function
of wavelength has been estimated. Further assumptions about the emissivity of the
telescope, optics, and baffling, the efficiency of the detectors had to be made. Figure 3-4
shows the resulting sensitivities for continuum and unresolved lines as minimum
detectable fluxes per pixel, i.e. detected with a signal to noise ratio (SNR) of 4 and an on-
source integration time of 900 s or 15 min.

The FIFI-LS on-line exposure time estimator should be used to estimate the on-source
exposure times used in proposals and observing preparation. The time estimator
calculates the on-source integration time per map position for a source flux, F and a
desired SNR using Eq. 3-1:

(Eq.3-1)

 

where MDF(λ) is either the Minimum Detectable Continuum Flux (MDCF) in Jy per pixel or
the Minimum Detectable Line Flux (MDLF) in W m  per pixel at the entered wavelength
(see Figure 3-4).

 

Figure 3-4.
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Figure 3-4. Continuum and emission line sensitivities for a
monochromatic point source: The values are calculated for a SNR of 4
in 900 s. The MDCF is in Jy per pixel and the MDLF is in Wm  per pixel.
Both sensitivity values scale as SNR / √(t), where t is the on-source
integration time.
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of Contents. Users may also navigate through the entire Observer's Handbook by using
the complete Table of Contents menu to the right.

3.2.   Planning Observations

3.2.1   Observing Modes
The high sky background in the far infrared requires careful subtraction. That is achieved
by chopping with SOFIA's secondary mirror and by nodding the telescope. The secondary
will chop at 2 Hz to efficiently remove the sky emission. To remove residual background
not canceled by chopping, the telescope is nodded typically every 30 s either to move
the source to the other chop-beam or to an off-position. Since the instrument telescope
communications and the telescope move take 10 s, a whole nod-cycle takes typically 80
s.

The following sections describe the possible observing modes. In the discussion of the
overheads, N is the number of map positions and t  is the on-source exposure time per
map position. The main driver to choose the observing mode is to figure out possible
chop configuration. However, the details like the exact chop throw and angle and other
observing details do not need to be fixed until Phase II of the proposal process.
Information on how the parameters for each mode is to be entered into USPOT during
Phase II of the proposal process can be found on the FIFI-LS USPOT web page.

Return to Table of Contents

3.2.1.1   Symmetric Chop
If possible this observing mode should be used because it is the most efficient mode.
This mode combines chopping symmetrically to the telescope's optical axis with a
matched telescope nod to remove the residual telescope background. This mode is also
known as nod match-chop (NMC) mode (cf. Section 5.2.1) or beam switching (BSW,
cf. Section 7.2.1).
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When observing using a symmetric chop, large chop amplitudes degrade the image
quality due to the introduction of coma. This effect causes asymmetric smearing of the
Point Spread Function (PSF) in the direction of the chop. However, the effect is small
(with effect on Signal to Noise Ratio (SNR) less than 10%) in the red channel for all chop
throws and in the blue channel for total chop throws less then 5 arcmin and wavelengths
longer than 63 μm. For wavelengths shorter than 63 μm, we recommend total chop
throws of less than 4 arcmin. Generally, it is recommended to use a chop as small as
possible, but keep the FOV in the off-positions outside of any detectable emission.

The position angle of the chop can be specified relative to equatorial coordinates or
telescope coordinates (e.g. horizontal). Keep in mind that the telescope nod matched to
the chop creates two off-positions symmetric to the on-position (Figure 3-5).

The total overhead in this mode is about 1.6N t  + 300 s, since the source is only
observed during 50% of the observation and additional time is required for telescope
moves, plus 300 s for the setup. This overhead estimate assumes that the on-source
exposure time per map position t  is at least 30 s. If the on-source exposure time per
map position t  is less than 15 s, the Bright Object mode should be used. For values of
t  in between, one needs to enter an alternate overhead in SPT. The total alternate
overhead is N(t  + 20 s) + 300 s.

Figure 3-5.
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3.2.1.2   Asymmetric Chop
If the target's size or environment does not allow to use the Symmetric Chop Mode, one
has to use the Asymmetric Chop mode allowing larger chop throws at shorter
wavelengths and is not creating symmetric off-positions around the source. The
asymmetric chop keeps the on-beam on the optical axis. This results in an image
unaffected by coma. Consequently, the off-beam is off-center by twice the amount
compared to the symmetric chop with the same chop throw resulting in twice as much
coma. But that is of no consequence as the off-beam should only see empty sky. The
telescope is nodded to an off-position where the same chopped observation is executed
to provide the residual background subtraction. Figure 3-4 illustrates this geometry. Note
that this mode is similar to FORCAST's asymmetric chop-offset-nod (C2NC2) mode (see
Section 5.2.1">Section 5.2.1).

The total overhead in this mode is about 4.2N t  + 300 s, since the source is observed
during 25% of the observation plus additional time for telescope moves and 300 s for the
setup. This overhead estimate assumes that the on-source exposure time per map
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position t  is at least 15 s. For shorter values of t , the Bright Object mode should be
used.
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3.2.1.3   Bright Objects
For very bright objects, where the estimated on-source exposure time per map position
is 15 s or less, the total observing time is dominated by telescope movements. The
efficiency of mapping such bright objects can be improved by observing two map
positions and one off-position per nod-cycle using an asymmetric chop. In this mode, the
total overhead is 3 N t  + 300 s assuming an on-source exposure times per map position
of about 15 s. Please contact the Help-Desk, if you are planning shorter integration
times. The overhead increases with shorter integration times and the standard overhead
calculation should be overwritten with the actual overheads for such short integrations
times.
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3.2.1.4   Spectral Scan
In contrast to the other observing modes, this mode targets spectral features much
wider than the bandwidth (see Section 3.1.2.2) like solid state features. The problem is a
good atmospheric calibration over the whole observed wavelength range. The spectrum
has to pieced together from many different exposures. The best way to take such data
and how to reduce it is still being investigated. If this observing mode is considered,
please contact the Help-Desk.
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3.2.2   Integration Time Estimates
The FIFI-LS on-line exposure time estimator should be used to estimate the on-source
exposure times used in proposals and observing preparation. The time estimator
requires the following input:

Observatory Altitude
(in feet; < 60,000 ft): default 38,000 ft
This value is used in ATRAN to derive the atmospheric absorption. For more details
about ATRAN (see Section 1.3).
On a typical SOFIA flight, observations start at 38,000 ft or 39,000 ft and 43,000 ft
are reached 3.5 h before the observations end. The default value of 38,000 ft
ensures that time estimate does not underestimates the water vapor overburden. If
an observations is rather sensitive to the water vapor, a higher altitude can be
entered and justified in the proposal. In Phase II, select Low or VeryLow for
Requested WV Overburden in the Observing Condition panel in USPOT, if the
altitude used in the time estimation is 41,000 ft or 43,000 ft, respectively. Note, that
this limits the schedulability of the observation to the last 5.5 h or 3.5 h of
observations.
 
Water Vapor Overburden
(in microns; 0 if unknown): default 0

on on

on
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If a value of 0 is given, ATRAN assumes a typical amount of water vapor to derive
the atmospheric absorption.
 
Telescope Elevation
(between 20 and 60 deg): default 40
For northern sources an elevation of 40° is okay, but sources south of a declination
of -15° will most likely be observed at a respectively lower elevations unless an
observation from the southern hemisphere is required.
 
Signal to Noise Ratio or Integration Time(s) 
default SNR 5
Specify either a requested SNR and the required on-source exposure time is
returned, or specify an on-source exposure time and the resulting SNR is returned.
 
Wavelength
(in microns, between 51 and 203): default 157.741 μm (rest wavelength of [CII] line)
Specify the rest wavelength of the requested transition.
 
Source Flux
default 2.087e-17 W m  line flux (MDLF per pixel for [CII])
Specify the expected source flux per FIFI-LS pixel either as integrated line flux in
W/m  or as continuum flux density in Jansky. Make it obvious in the technical
feasibility section of the proposal that the referenced flux estimates have been
converted to FIFI-LS pixels sizes.
 
Source Velocity
(in km/s): default 0 km/s
Enter the radial velocity of the source relative to the local standard of rest (LSR).
 
Input Observer Velocity
(VLSR in km/s): default 0 km/s
In many, but not all cases, the default value of zero can be used. However, if the
observing wavelength is near a strong narrow telluric feature, the earth's velocity
relative  to the LSR becomes important, eg. for galactic sources and the [OI] line at
145.525 μm. Then either enter the velocity directly or have it computed by entering
time, date, source coordinates, and SOFIA's location. The Doppler-shift due to the
source's and the observatory's velocity is important to estimate the atmospheric
extinction, discussed further below.
 
Bandwidth
default 0 km/s
Enter the desired width of the spectrum. The width should allow for sufficient
baseline on both sides of the expected line/spectral feature to allow a good
estimate of the underlying continuum telluric and astronomical. This value enters
the time estimate as the factor l. If the desired spectrum is wider than the
instantaneous bandwidth, I is the ratio of the requested width of the spectrum and
the bandwidth (Figure 3-3). Otherwise I is equal to 1.
 

The time estimator calculates the on-source integration time per map position for a

-2

2



source flux, F and a desired SNR using Eq.3-1 (see also Figure 3-4).

The factor α is the transmission of the atmosphere for the observing wavelength derived
by ATRAN. The on-line time estimator includes a plot of the transmission of the
atmosphere at full spectral resolution and smoothed to the spectral resolution of FIFI-LS
at the observing wavelength over the bandwidth. Two integration times are calculated
using the transmissions from each curve. The value derived from the unsmoothed curve
applies to an observation of a very narrow line, while the value from the smoothed curve
applies to a continuum source or a line broader than the instrument's spectral resolution.
If the atmospheric transmission is smooth near the observing wavelength, the two values
will not differ much and the more conservative or appropriate observing time should be
chosen. Furthermore, the observing time will not depend strongly on the source velocity.
The velocity correction can be rounded to 100km/s and the earth's velocity can be
ignored.

However, if there is a telluric feature near the observing wavelength, one has to carefully
check the feasibility of the observation (a special warning is displayed if the ratio of the
derived observing times exceed 1.5). This usually happens when the observing
wavelength is near a strong and narrow atmospheric feature. A typical example is the
[OI] line at 145.525 μm, which is near a narrow and strong telluric feature at 145.513 μm
or at -25 km/s relative to the [OI] line. In such a case, it is crucial to enter a good
estimate of the source velocity accurate to ~1 km/s. The source velocity needs to be the
combination of the source velocity relative to the LSR or another reference frame and
earth's velocity relative to that reference frame, which depends on the observing date
and target location. Therefore the time estimator includes a calculator for the earth's
velocity relative to the LSR. It may be necessary to add a time constraint for the
observation to avoid an adverse earth's velocity relative to the source.

If the observing line is near a strong and narrow telluric feature, not only the observing
time estimate needs greater care, but the correction for the atmospheric absorption of
an observed line flux will have a large uncertainty. To derive the correction factor, the
atmospheric transmission curve would need to be integrated while weighted with the
intrinsic line profile of the observed emission line with the correct relative Doppler-shift.
In most cases FIFI-LS will not be able to resolve the line profile and cannot resolve the
atmospheric feature. Any attempt to correct the measured line flux would depend
strongly on assumptions of the source's line shape and position and assumptions of the
water vapor content and shape of the telluric feature. In short, expect a large uncertainty
of a line flux measured near a strong and narrow telluric feature.

The exposure time estimator returns the on-source exposure time per map position t . If
mapping is planned, this values has to be multiplied with N, the number of map
positions, to derive the total on-source observing time. More on mapping can be found in
Section 3.2.3. The total on-source observing time N x t  has to be entered into USPOT
during Phase I of the proposal process. The overhead depends on the observing mode
(Section 3.2.3) and is automatically added by USPOT.

Be conservative with the time estimates! Unforeseen issues like thunderstorms or
computer crashes may cut the observing time short. Better to aim for 5σ and get a 3σ
result, than aim for a 3σ and then wonder, what to do with a 1.8σ signal.

on

on
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3.2.3   Spectral Dithering
Spectral dithering is always employed for self flat-fielding and increased redundancy.
Spectral dithering implemented via a grating scan. The grating is moved in small steps,
so that the spectrum moves over different pixels in the spectral dimension of the
detector array.

The default pattern to cover the instantaneous bandwidth (BW, Section 3.1.2.2) is to
move the grating 12 steps, each corresponding to half a spectral pixel width. This
pattern results in a spectrum about 30% wider than the BW. The central 70% of the BW
are observed during the whole observing time reaching the full SNR, while the remaining
15% on each side of the BW should reach on average 86% of the SNR. The SNR reached
on the extra 30% should still be 46% on average based on the observing time for each
part of the spectrum. For wider spectral coverage, the step size and number of steps of
the grating scan will be adjusted by the instrument operators to achieve the desired
spectral coverage. The steps will be evenly distributed over the nod-cycles.
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3.2.4   Mapping
Mapping is supported by all of the observing modes exept the Spectral Scan. It can be
done on a rectangular grid with a user-defined spacing and extent. It is also possible to
supply a list of mapping positions to achieve a map with a custom shape optimized to
the source geometry. For both map types, a spacing of 15 arcsec might be a good choice
providing half pixel steps to yields super-resolution with a good overlap for the blue array
and a very strong overlap for the red array. For very large maps fast maps, a spacing of
half a red array or 30 arcsec achievs super-resolution with a good overlap for the red
array and full coverage (but no overlap) for the blue array. These details need to be
specified only in Phase II of the proposal process (see the FIFI-LS USPOT chapter). In
Phase I, the effective map area needs to be entered in SPT and the proposal should
explain the suggested mapping strategy. The on-source integration time to be entered in
SPT has to be the on-source integration time per raster point multiplied by the number of
raster map points N t .

If the source geometry allows the off-beam to be positioned symmetrically on both sides
of the source, then one should use the much more efficient Symmetric Chop mode for
mapping. If that is not possible the Asymmetric Chop mode has to be used. An
asymmetric chop is also used in the Bright Object Mode. Figure 3-6 illustrates mapping
with an asymmetric chop. The off-beam (positions B1 to B3) covers an area while
chopping that is the same size as the map itself. If this is undesirable, the map needs to
be broken up into sub-maps with varying chop parameters to be specified in Phase II.
The availability of guide stars might be another reason to break up a large map into sub-
maps. In this case the sub-maps will be identified between Phase II and the actual
observation by the support scientist in close collaboration with the guest investigator and
the telescope operator.

When estimating the on-source integration time (Section 3.1.2.3), take into account the
differing overlap of the red and blue FOV at the desired raster map spacing. The SNR

on
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entered into the calculation of t  is the SNR for a single raster map point. The final SNR
for a point in the map should reach √x * SNR with n being the number of raster points
from which a point is covered by the respective FOV. For example in Figure 3-6, the area
of the pixel in the middle is covered by 3 FOVs while 16 pixels are covered by 2 FOVs and
the outer parts of the map are covered by 1 FOV.

Figure 3-6.

Figure 3-6. The geometry of chopping and nodding while mapping
using the asymmetric chop mode.
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4.1   Specifications
4.1.1   Instrument Overview
The Faint Object infraRed CAmera for the SOFIA Telescope (FORCAST) is a dual-channel
mid-infrared camera and spectrograph sensitive from 5–40 μm. Each channel consists of
a 256x256 pixel array that yields a 3.4x3.2 arcmin instantaneous field-of-view with 0.768
arcsec pixels, after distortion correction. The Short Wavelength Channel (SWC) uses a
Si:As blocked-impurity band (BIB) array optimized for λ < 25 μm, while the Long
Wavelength Channel's (LWC) Si:Sb BIB array is optmized for λ > 25 μm. Observations
can be made through either of the two channels individually or, by use of a dichroic
mirror, with both channels simultaneously across most of the range. Spectroscopy is also
possible using a suite of six grisms, which provide coverage from 5–40 μm with a low
spectral resolution of R = λ/Δλ ~ 200. The instrument has space for cross dispersing
grisms allowing for high resolution cross-dispersed (XD) spectroscopy at R ~ 800–1200 in
the 5–14 μm range. The availability of the XD configuration during a given cycle is
published in the Call-for-Proposals.
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4.1.1.1   Design
The FORCAST instrument is composed of two cryogenically cooled cameras of
functionally identical design. A schematic of the instrument layout is provided in Figure
4-1 below. Light from the SOFIA telescope enters the dewar through a 7.6 cm (3.0 in)
caesium iodide (CsI) window and cold stop and is focused at the field stop, where a six
position aperture wheel is located. The wheel holds the imaging aperture, the slits used
for spectroscopy, and a collection of field masks for instrument characterization. The
light then passes to the collimator mirror (an off-axis hyperboloid) before striking the
first fold mirror, which redirects the light into the LHe-cooled portion of the cryostat.

The incoming beam then reaches a four-position slide, which includes an open position, a
mirror, and two dichroics, one for normal use and the other as a spare. The open position
passes the beam to a second fold mirror, which sends the beam to the LWC, while the
mirror redirects the light to the SWC. The magnesium oxide (MgO) dichroic reflects light
below 26 μm to the SWC and passes light from 26–40 μm to the LWC. The light then
passes through a Lyot stop at which are located two filter wheels of six positions each,
allowing combinations of up to 10 separate filters and grisms per channel. Well
characterized, off-the-shelf filters can be used, since the filter wheel apertures have a
standard 25 mm diameter (see Section 4.1.2.2).



Finally, the incoming beam enters the camera block and passes through the camera
optics. These two-element catoptric systems are composed of an off-axis hyperboloid
mirror and an off-axis ellipsoid mirror that focuses the light on the focal plane array. Also
included is an insertable pupil viewer that images the Lyot stop on the arrays to facilitate
alignment of the collimator mirror with the telescope optical axis and to allow
characterization of the emissivity of both the sky and telescope.

Figure 4-1.

Figure 4-1. A schematic of the FORCAST layout.
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4.1.2   Performance
4.1.2.1   Camera Performance
The SWC and LWC arrays were selected to optimize performance across the 5–40 μm
bandpass. Both arrays have a quantum efficiency (QE) greater than 25% over most of
their spectral range. The cameras can be operated with variable frame rates and in
either high or low capacitance modes (which are characterized by well depths of 1.8x107
and 1.9x106 e- respectively), depending upon the sky background and source
brightness.

The best measured image quality (IQ) obtained by FORCAST on SOFIA is in the 7–11 μm
range with a FWHM PSF (point spread function) of ~2.7 arcsec. This measured image
quality in-flight is limited by telescope jitter arising from vibrations of the telescope itself
(e.g., due to wind loading in the cavity), turbulence, and tracking accuracy. Presented in

https://www.sofia.usra.edu/sites/default/files/Instruments/FORCAST/Images_Media/FORCAST_Design_7-1_OH7.jpeg


Figure 4-2 is a sample of FWHM IQ measurements made during a single observatory
characterization flight during the winter of 2010 in comparison to the theoretical
diffraction limit calculated for a 2.5 m primary with a 14% central obstruction combined
with the FWHM telescope jitter, here assumed to be 2.08 arcsec (1.25 arcsec rms).

Figure 4-2.

Figure 4-2. Representative FWHM Image Quality for the FORCAST
camera in select filters as measured during Cycle 4. Also shown are
the diffraction limited FWHM (solid line; calculated for a 2.5-m primary
with a 14% central obstruction) and the modeled IQ (dashed line),
which includes shear layer seeing and 1.25 arcsec rms telescope jitter.

Return to Table of Contents

4.1.2.2   Filter Suite
Imaging with FORCAST can be performed in either a single channel or in both the SWC
and LWC channels simultaneously (dual channel configuration). In a single channel
configuration, any one of the available filters may be used. In the dual channel
configuration, a dichroic is used to split the incoming beam, directing it to both the SWC
and LWC.

The dichroic reduces the overall throughput. Table 4-1 shows the throughput with the
dichroic in (dual channel configuration) relative to that for the single channel
configuration. The degradation of the system throughput by the dichroic can have a
significant effect on the instrument sensitivities as discussed in more detail in Section
4.1.2.3. In addition, since there are more short wavelength filters available than slots in
the SWC filter wheels, some short wave filters will be housed in the LWC. The final filter
wheel configuration for each observing cycle will be driven by proposal pressure.
Depending on the final filter configuration, it is possible that not all LWC filters will be
able to be used in the dual channel configuration due to the cutoff in the dichroic
transmission at short wavelengths.

Table 4-1: Dichroic Throughput

https://www.sofia.usra.edu/sites/default/files/Instruments/FORCAST/Images_Media/FORCAST%20Specifications%207-2_OH7.png


Dichroic Throughput
Bandpass Throughput

5-10 μm 60%

11-25μm 85%

25-40 μm 40%

The filters in the SWC are standard Optical Coating Laboratory, Inc. (OCLI) thin-film
interference filters. These filters are stacked with blocking filters to prevent light leaks.
The only exception is the 25.4 μm (FOR_F253) University of Reading filter, which is a
custom double half-wave (three mesh) scattering filter stacked with a diamond scattering
blocking filter to provide blue-light rejection. The 33.6 (FOR_F336), 34.7 (FOR_F347), and
37.1 μm (FOR_F371) filters in the LWC are LakeShore custom double half-wave (three
mesh) scattering filters. The 31.5 μm filter is a Fabry-Perot Interferometer filter.

The central wavelengths, bandwidths, and the typical FWHM IQ in each of the filters are
given in Table 4-2 below. The first column under the Imaging FWHM column (single
channel) heading presents the best measured FWHM IQ in single channel configuration.
These values are representative of the IQ observed since Cycle 3. The second column
(dual channel) contains the average measured FWHM IQ in dual channel configuration.
Not all of the filters have measured IQ values, but we expect that they will be
comparable to those with measured values that are of similar λ . Figure 4-3 shows the
filter transmission profiles (normalized to their peak transmission) over-plotted on an
ATRAN model of the atmospheric transmission. The filter transmission curves (text
tables) are available as a zip file or individually from Table 4-2.

Due to the limited number of slots available in the filter wheels, not all of the filters listed
in Table 4-2 are available at any one time. For Cycle 7, there will be a nominal filter set
(indicated by bold italic type in Table 4-2). Other filters can be requesed for use, but a
convincing scientific argument must be made to justify swapping out the existing filters.
A filter swap during the cycle may be permitted dependent upon proposal pressure; more
details are available in the Call for Proposals.

 
Table 4-2: Filter Characteristics

Filter Characteristics

Channel Filter λ
(μm)

Δλ
(μm)

Imaging FWHM (arcsec)
ProfilesSingle

Channel
Dual

Channel

FOR_F054 5.4 0.16 ‒ ‒ txt file

FOR_F056 5.6 0.08 ‒ ‒ txt file

eff

eff

b

https://www.sofia.usra.edu/sites/default/files/Other/Documents/SOFIA_Cy6_CfP.pdf
https://www.sofia.usra.edu/sites/default/files/05pt4mu.txt
https://www.sofia.usra.edu/sites/default/files/Instruments/FORCAST/Documents/OCLI_N05612-4.txt


SWC

FOR_F064 6.4 0.14 2.9 2.9 txt file

FOR_F066 6.6 0.24 2.9 3.1 txt file

FOR_F077 7.7 0.47 3.0 3.0 txt file

FOR_F088 8.8 0.41 - - -

FOR_F111 11.1 0.95 2.8 2.9 txt file

FOR_F112 11.2 2.7 - - -

FOR_F197 19.7 5.5 2.4 2.5 txt file

FOR_F253 25.3 1.86 2.3 2.1 txt file

LWC

FOR_F113 11.3 0.24 2.6 ‒ txt file

FOR_F118 11.8 0.74 2.6 ‒ -

FOR_F242 24.2 2.9 2.6 - txt file

FOR_F315 31.5 5.7 2.8 2.8 txt file

FOR_F336 33.6 1.9 3.1 3.3 txt file

FOR_F348 34.8 3.8 3.1 3.0 txt file

FOR_F371 37.1 3.3 2.9 3.4 txt file

 Entires in blue are expected to be part of the default filter set for Cycle 7.
IQ values for some filters have not been measured at this time, but it is expected that

they will be similar to those of similar λ  with measured values.
 
Figure 4-3.
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Figure 4-3. FORCAST filter transmission profiles along with an ATRAN
model of the atmospheric transmission across the FORCAST band
(assuming a zenith angle of 45 degrees and 7 μm of precipitable water
vapor). For clarity, the filter profiles have been normalized to their
peak transmission. SWC filters alternate between green and blue,
while LWC filters alternate between red and yellow.
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4.1.2.3   Imaging Sensitivities
The FORCAST imaging sensitivities for a continuum point source for each filter are
presented in Table 4-3 and Figure 4-4. The Minimum Detectable Continuum Flux (MDCF;
80% enclosed energy) in mJy needed to obtain a S/N = 4 in 900 seconds of on-source
integration time is plotted versus wavelength. The MDCF scales roughly as (S/N) / √(t)
where t = net integration time. The horizontal bars indicate the effective bandpass at
each wavelength. At the shorter wavelengths the bandpass is sometimes narrower than
the symbol size.

Atmospheric transmission will affect sensitivity, depending on water vapor overburden.
The sensitivity is also affected by telescope emissivity, estimated to be 15% for Figure 4-
4.

Observations with FORCAST are performed using standard IR chop-nod techniques.
Chop/nod amplitudes can be chosen such as that they are small enough to leave the
source on the array in each position or large enough that the source is positioned off the
chip for one of the chop positions. For background-limited observations, as is the case
with FORCAST on SOFIA, chopping and nodding off-chip in nod-match-chop (NMC; see
Section 4.2.1) will generally result in the same signal to noise (S/N) as chopping and
nodding on-chip in nod-perp-chop (NPC; see Section 4.2.1). Calculations of S/N for
various chop-nod scenarios are provided here.

 
Table 4-3: Filter Sensitivities
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Filter Sensitivities
Filter Channel Single Chan. MDCF (mJy) Dual Chan. MDCF (mJy)

FOR_F054 SWC 41.5 575

FOR_F056 SWC 48.9 225

FOR_F064 SWC 52.5 59.5

FOR_F066 SWC 58.8 77.7

FOR_F077 SWC 54.7 66.6

FOR_F088 LWC 63.0 65.7

FOR_F111 SWC 90.2 97.1

FOR_F112 SWC 50.0 63.4

FOR_F113 LWC 206 -

FOR_F118 LWC 123 -

FOR_F197 SWC 73.5 77.4

FOR_F242 LWC 97.9 -

FOR_F253 SWC 150 158

FOR_F315 LWC 126 171

FOR_F336 LWC 265 380

FOR_F348 LWC 180 257

FOR_F371 LWC 245 376

 MDCF values shown are those measured from Cycle 4 data.
 No observations were available to test the theoretical MDCF values.

 
Figure 4-4.
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Figure 4-4. Cycle 7 continuum point source sensitivities for single
and dual channel modes. Values are for S/N = 4 in 900 s under
nominal conditions. Investigators are encouraged to use the SOFIA
Integration Time Calculator (SITE) for their calculations.

Return to Table of Contents

4.1.2.4   Grisms
The suite of 6 grisms available for FORCAST provide low to medium resolution coverage
throughout most of the range from 5–40 μm (see Table 4-4). The grisms are situated in
the four filter wheels: two in each SWC wheel and one in each LWC wheel. The
arrangement is chosen to minimize the impact on the imaging capabilities of the
instrument. The grisms are blazed, diffraction gratings used in transmission and stacked
with blocking filters to prevent order contamination. A summary of the grism properties
is provided in Table 4-4. Note that during Cycle 7, the cross-dispersed XD configuration
will not be available. The information on XD configuration below is for informational
purposes, only.

Grisms FOR_G063, FOR_G227, FOR_G329, and the FOR_XG063 dispersing grism provided
by the University of Texas at Austin, are made of silicon to take advantage of its high
index of refraction, which allows optimum spectral resolution. However, these grisms
suffer from various absorption artifacts precluding their use in the 8–17 μm window.
Coverage in this region is provided by the FOR_G111 grism (and its cross-dispersing
counterpart), constructed of KRS-5 (thallium bromoiodide) by Carl-Zeiss (Jena, Germany).
These latter two grisms have a lower spectral resolution due to the lower index of
refraction of the KRS-5 material.

Three slits have been designed for FORCAST: two long slits (2.4 x 191 arcsec, 4.7 x 191
arcsec) and a short slit (2.4 x 11.2 arcsec). The narrow slits yield higher resolution data.
All of the slits are located in the aperture wheel of the instrument. The cross-dispersed
spectra are obtained by using the short slit and passing the beam first through the low-
resolution grism (either FOR_G063 or FOR_G111), followed by a disperser.

Although grisms are available in both cameras, during Cycle 7 grism spectroscopy will be

https://www.sofia.usra.edu/sites/default/files/Instruments/FORCAST/Images_Media/FORCAST_Specifications_7-4_OH7.png
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available only in single channel configuration.

It is important to note that due to the fixed position of the slits in the aperture wheels,
the lack of a field de-rotator, and the fact that SOFIA behaves in many respects as an Alt-
Az telescope, the orientation of the slit on the sky will be dependent on the flight plan
and will not be able to be predetermined. Furthermore, the slit orientation rotates on the
sky with each telescope Line-of-Sight (LOS) rewind (see Section 1.2.4). These limitations
may be especially important to consider when proposing observations of extended
objects.

 
Table 4-4: Grism Characteristics

Grism Characteristics

Channel Grism Material
Groove

Sep.
(μm)

Prism
Angle

(°)
Order Coverage

(μm)
R

(λ/Δλ)

SWC

FOR_G063 Si 25 6.16 1 4.9 - 8.0 120 /180

FOR_XG063 Si 87 32.6 15 -
23 4.9 - 8.0 1170

FOR_G111 KRS-5 32 15.2 1 8.4 - 13.7 130 /260

LWC
FOR_G227 Si 87 6.16 1 17.6 -

27.7 110/120

FOR_G329 Si 142 11.07 2 28.7 -
37.1 160/170

 For the 4.7'' x 191'' and the 2.4'' x 191'' slits, respectively
 Not available during Cycle 7
 The resolution of the long, narrow-slit modes is dependent on (and varies slightly with)

the in-flight IQ
 Only available with the 2.4'' x 11.2'' slit
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4.1.2.5   Spectroscopic Sensitivity
Tables 4-5 and 4-6 provide samples of the MDCF and Minimum Detectable Line Flux
(MDLF) calculated at three different wavelengths across each grism bandpass for each of
FORCAST's spectroscopic configurations. The data are provided for point sources only.
The MDCF and MDLF estimates are for the raw integration time of 900 seconds and do
not include observing overheads, but do account for a a two-position chop (perpendicular
to the slit).

Figure 4-5 presents the continuum point source sensitivities for the FORCAST grisms. The
plots are the MDCF in Jy needed for a S/N of 4 in 900 seconds at a water vapor
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overburden of 7 μm, an altitude of 41K feet, and a zenith angle of 60°. The rapid
variations with λ are due to discrete atmospheric absorption features (as computed by
ATRAN).

To determine the required integration time necessary to achieve a desired S/N ratio for a
given source flux, the FORCAST online grism exposure time calculator should be used.
The on-line calculator also allows for calculation of the limiting flux for a given
integration time and required S/N. Since FORCAST observations are background limited,
the values given in Tables 4-5 and 4-6 and Figure 4-5 can be used to make an estimate
of the required integration time using Equation 4-1:

(Eq. 4-1)

where [S/N]  is the desired signal-to-noise ratio, F  is the continuum flux of the target,
t  is the exposure time on source (without taking into consideration observational
overheads), and the MDCF is taken from the tables for the point-source sensitivities or
estimated from the figures. For emission lines, simply use the line flux for F  and use
the MDLF value instead of the MDCF. However, these tables may not contain the most
recent or best determined sensitivity values and therefore the on-line calculator results
should be used in the actual proposal.

 
Table 4-5: Long Slit Point Source Sensitivities

Long Slit Point Source Sensitivities

Grism  λ
(μm)

R =
(λ/Δλ)

MDCF
(mJy)

MDLF (W
m )

R=
(λ/Δλ)

MDCF
(mJy)

MDLF (W
m )

 4.7'' Slit 2.4'' Slit

FOR_G063 5.1 120 79 2.3E-16 180 98 2.9E-16

FOR_G063 6.4 120 219 5.2E-16 180 268 6.3E-16

FOR_G063 7.7 120 496 5.2E-16 180 724 6.3E-16

FOR_G111 8.6 130 419 4.9E-16 300 532 6.2E-16

FOR_G111 11.0 130 449 4.1E-16 300 575 5.2E-16

FOR_G111 13.2 130 593 4.5E-16 300 764 5.8E-16

FOR_G227 17.8 110 715 8.6E-16 140 936 1.1E-15

FOR_G227 22.8 110 834 7.9E-16 140 989 9.3E-16

FOR_G227 27.2 110 1979 1.6E-15 140 2586 2.0E-15

=
[S/N]req

4

Fsrc ⋅ √texp

MDCF ⋅ √900

req src

exp

src

-2 -2

https://atran.sofia.usra.edu/cgi-bin/atran/atran.cgi
http://forcast.sofia.usra.edu/cgi-bin/forcast/forcast_grisms_calc.cgi


FOR_G329 28.9 160 1365 6.5E-16 220 1899 9.0E-16

FOR_G329 34.1 160 1408 5.6E-16 220 1994 8.0E-16

FOR_G329 37.0 160 1763 5.6E-16 220 2439 8.0E-16

Grism  λ
(μm)

R =
(λ/Δλ)

MDCF
(mJy)

MDLF (W
m )

R=
(λ/Δλ)

MDCF
(mJy)

MDLF (W
m )

 The 2.4 arcsec long slit mode for G329 will not be available during Cycle 7.
 

Table 4-6: Cross-Dispersed Point Source Sensitivities

Cross-Dispersed Point Source Sensitivities
 Grism λ (μm) R = (λ/Δλ) MDCF (mJy) MDLF (W m )

  2.4'' x 11.2'' Slit

FOR_XG063 5.1 1200 238 1.2E-16

FOR_XG063 6.4 1200 703 2.8E-16

FOR_XG063 7.7 1200 918 3.0E-16

 XD configurations are not available during Cycle 7.
 
Figure 4-5.

Figure 4-5. Cycle 7 grism continuum point source sensitivities for
both wide and narrow long slits overlaid on an atmospheric
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transmission model (light blue). Values are for S/N = 4 in 900 s under
nominal conditions.
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4.2   Planning Observations

As is the case with ground based observations at mid-IR wavelengths, individual
FORCAST exposures will be dominated by the sky and telescope background. Therefore
chopping and nodding are essential for each observation. Selection of the observing
mode and its parameters, including the distance and direction of chop and nod throws,
depend on the details of the field of view around the target. The source(s) of interest
may be surrounded by other IR-bright sources or may lie in a region of extended



emission, which needs to be avoided to ensure proper background subtraction.
Presented in this section is a discussion of how to best plan FORCAST observations in
order to optimize the success of observations.

4.2.1   Imaging Observations
Proposers are strongly encouraged to familiarize themselves with the basics
of techniques for performing background limited observations covered in Section 1.3. In
brief, the imaging observation modes for FORCAST include the following:

NMC Mode
Nod Match Chop mode consists of a chop symmetric about the optical axis of the
telescope with one of the two chop positions centered on the target. The nod throw
is oriented 180° from the chop, i.e. anti-parallel, such that when the telescope nods,
the source is located in the opposite chop position. The chop/nod subtraction results
in two negative beams on either side of the positive beam, which is the sum of the
source intensity in both nod positions and therefore has twice the intensity of either
negative beam. This mode uses the standard ABBA nod cadence. An example of an
observation taken in this mode is presented in the left panel of Figure 4-7.
 
NPC Mode
Similar to NMC, Nod Perpendicular to Chop mode also uses a chop that is symmetric
about the optical axis, but in this case the nod is perpendicular to the chop. The
final images produced using NPC show four sources arranged in a parallelogram
with alternating positive and negative beams. Unlike NMC, each beam in NPC has
the same relative intensity. This mode also uses the standard ABBA nod cadence.
The right side of Figure 4-7 shows data obtained using NPC. This mode will not be
supported in Cycle 7.
 
C2NC2 Mode
In Chop-Offset Nod mode, the chop throw is asymmetric, such that one chop
position is centered on the optical axis (and the target) while the second (sky)
position is off-axis. Rather than nodding, the telescope then slews to an offset
position free of sources or significant background and the same chop pattern is
repeated. Observations in C2NC2 mode follow a nod cadence of ABA and, by
default, are dithered to remove correlated noise. This mode is particularly useful for
large extended objects, smaller objects that are situated within crowded fields, or
regions of diffuse emission with only limited sky positions suitable for background
removal.
 

Since only a single chop position out of a full chop/nod cycle is on source, NMC and NPC
have a much greater efficiency than C2NC2. A sample mosaic demonstrating how a
C2NC2 observation might be designed for a large, extended object is provided in Figure
4-8, and it is immediately apparent from the figure that C2NC2 has an efficiency of only
~20%. However, while mosaicking cna be performed for any of the available obseving
modes, proposers should keep in mind that the effects of coma may compromise the
image severely for fields requiring large chop amplitudes when chopping symmetrically
(NMC or NPC modes). If the source has an angular extent large enough that multiple
pointings are required, the central position of each FORCAST field must be specified, with
due consideration of the desired overlap of the individual frames. For more on

https://www.sofia.usra.edu/science/proposing-and-observing/sofia-observers-handbook-cycle-6/1-introduction/13-performing


mosaicking, see Section 5.3.1.2b in the USPOT Manual.

Figure 4-7.

Figure 4-7. Each source position (solid line) with its associated
asymmetric chop position (dashed line) have matching colors. After a
full chop cycle at each position, the telescope is slewed to a location
off of the source, shown in black and labeled with the coordinates
(600, 600). The chop throw and angle at that position is the same as it
is for the source position to which it is referenced (not shown in the
figure).

Figure 4-8.

https://www.sofia.usra.edu/science/proposing-and-observing/uspot-manual-v-810
https://www.sofia.usra.edu/sites/default/files/Instruments/FORCAST/Images_Media/OH6_NMC_NPC_FORCAST_OH7.jpeg


Once a proposal has been accepted, the proposer, in collaboration with the SMO
instrument scientist, will specify the details of chopping and nodding for each
observation using the SOFIA observation preparation tool (USPOT). Experienced
proposers are encouraged to design their observations using USPOT before writing their
proposals to prevent the loss of observing time that might occur if, during Phase II, the
observations are discovered to be more challenging than expected.

Following are a few of the most important issues to consider when preparing a FORCAST
Imaging proposal:

Check a Database
It is recommended that a near-IR or mid-IR database (e.g., 2MASS, Spitzer , WISE ,
MSX or IRAS) be checked to see if the target of interest is near other IR sources of
emission. In the case of extended sources, where on-chip (i.e., on the detector
array) chop and nod is not possible, it is necessary to pick areas free of IR emission

https://dcs.arc.nasa.gov/observationPlanning/installSSPOT/sspotDownload.jsp


for the chop and nod positions to get proper background subtracted images.

For Emissions Less than ~1.6 arcmin
If the IR emission from the region surrounding the source is restricted to a region
smaller than half the FORCAST field of view (i.e. ∼1.6 arcmin), then the chop and
nod can be done on-chip. Observations performed in NMC mode either on-chip or
off-chip yield a S/N equal to or slightly better than that obtained in NPC mode. For
additional discussion of this point, see the calculations of S/N for various FORCAST
chop-nod scenarios provided here.

Chop Throw Constraints
When using a symmetric chop, chopping and nodding can be performed in any
direction for chop throws less than 584 arcsec. When using an asymmetric chop, the
maximum possible chop throw is 420 arcsec. However, some chop angles (as
measured in the instrument reference frame) are not allowed for asymmetric chop
throws between 250 arcsec and 420 arcsec. Since the orientation of the instrument
relative to the sky will not be known until the flight plan is generated, Those
requesting chop throws between 250–420 arcsec are required to specify a range of
possible chop angles from which the instrument scientists can choose when the
flight plan is finalized. 

Additionally, large chop amplitudes may degrade the image quality due to the
introduction of coma. This effect causes asymmetric smearing of the PSF parallel to
the direction of the chop at a level of 2 arcsec per 1 arcmin of chop amplitude.

For large, extended objects, it may not be possible to obtain clean background
positions due to these limitations on the chop throw.

For Faint Targets
Currently, the longest nod dwell time (that is, the time spent in either the nod A or
nod B position) for FORCAST is 30 sec in the SWC-only and dual channel
configurations and up to 120 sec in the LWC-only configurations (depending on the
filter). Run the exposure time estimator to determine if the object will be visible in a
single A-B chop-subtracted, nod-subtracted pair, with an exposure time of 30 sec in
each nod position. If the object is bright enough to be detectable with S/N greater
than a few, it is recommended that dithering be used when observing in NMC or
NPC mode. The dithering will mitigate the effects of bad pixels when the individual
exposures are co-added.

If the object is not visible in a single A-B chop/nod-subtracted pair, with a nod dwell
time of 30 sec in each nod position (60 sec integration), then dithering should not
be used.

Return to Table of Contents

4.2.1.1   Estimation of Exposure Times
The exposure times for FORCAST imaging observations should be estimated using the
on-line exposure time calculator, SITE. SITE can be used to calculate the signal-to-noise
ratio (S/N) for a given total integration time, or to calculate the total integration time
required to achieve a specified S/N. The total integration time used by SITE corresponds

https://www.sofia.usra.edu/sites/default/files/Chopnod_SN_20130503.pdf
https://dcs.arc.nasa.gov/proposalDevelopment/SITE/index.jsp


to the time actually spent integrating on-source without overheads. These integration
times are used as input for USPOT, which will automatically calculate the necessary
overheads. The format of the S/N values output by SITE depends on the source type. For
Point Sources, the reported S/N is per resolution element, but for Extended Sources, it is
the S/N per pixel.

For mosaic observations the total integration time required for a single field should be
multiplied by the number of fields in the mosaic to obtain the total time, which is to be
entered in USPOT.

An important consideration in planning observations is whether FORCAST should be used
in single channel configuration, or in a dual channel configuration, since one gains the
extra filter observation at the cost of lower system throughput in the individual bands.
On the SITE form, a single channel configuration is specified by selecting the filter of
interest for one channel and selecting None on the other channel in the Instrument
properties section.

Return to Table of Contents

4.2.2   Spectroscopic Observations
Proposers are strongly encouraged to familiarize themselves with the basics
of techniques for performing background limited observations covered in Section 1.3. In
brief, the spectroscopic observation modes for FORCAST include the following:

NMC Mode
As with FORCAST imaging observations, Nod Match Chop mode consists of a
chop symmetric about the optical axis of the telescope with one of the two chop
positions centered on the target. See Section 4.2.1 or Section 1.3.
 
NPC CAS and NPC NAS Modes
Grism Nod Perpendicular to Chop observations can be performed either in a Chop
Along Slit mode (NPC CAS) or Nod Along Slit mode (NPC NAS). As with FORCAST
imaging observations, FORCAST's grism NPC modes also impliment a chop that is
symmetric about the optical axis–however, unlike in NMC mode, the nod is
perpendicular to the chop. The final images produced using NPC CAS or NAS show
two sources arranged along the slit with one positive and one negative beam.
Unlike NMC, each beam in NPC has the same relative intensity.
 
NXCAC Mode
Nod not related to Chop with Asymmetric Chop mode is the grism version of C2NC2,
i.e., an asymmetric chop with dithering along the slit. See Section 4.2.1 or Section
1.3.
 
Slitscan Mode
In Slitscan mode, the slit is moved across a target in discrete steps using dithers
perpendicular to the slit axis to yield a spectroscopic map of an entire area of sky.
 

During Cycle 7, grism spectroscopy with FORCAST will only be available in single
channel, long-slit configurations (SWC and LWC). By default, observations will be set up
using NMC aligned along the slit in Long Slit configurations and perpendicular to the slit

https://www.sofia.usra.edu/science/proposing-and-observing/sofia-observers-handbook-cycle-6/1-introduction/13-performing
https://www.sofia.usra.edu/science/proposing-and-observing/sofia-observers-handbook-cycle-6/1-introduction/13-performing
https://www.sofia.usra.edu/science/proposing-and-observing/sofia-observers-handbook-cycle-6/1-introduction/13-performing


in XD configuration. Due to the size of the PSF, neither chopping or nodding along the slit
nor dithering are possible for high-resolution XD observations. For larger sources and for
targets embedded in crowded fields it is advised to use C2NC2 mode.

The observing efficiency for FORCAST spectroscopic observations depends on a number
of factors, including the observing mode, chop frequency and nod cadence, the detector
frame rate, and LOS rewind cadence. The typical observing efficiency as measured from
NMC and NPC observations is 50–75% of clock time. Work is ongoing to optimize the
mode-dependent efficiency values. These efficiency estimates are built-in to USPOT and
do not need to be specified.

It is important to note that due to the fixed position of the grisms/slits in the
filter/aperture wheels, the orientation of the slit on the sky will be dependent on the flight
plan and will not be able to be predetermined. Further, the slit orientation rotates on the
sky with each telescope Line-of-Sight (LOS) rewind (Section 1.1). These limitations may
be especially important to consider when proposing observations of extended objects.

Return to Table of Contents

4.2.2.1   Estimation of Exposure Times
The exposure times for FORCAST Grism spectroscopic observations should be estimated
using the online FORCAST Grism Exposure Time Calculator tool. This calculator can be
used to calculate the signal-to-noise ratio (S/N) for a given total integration time, to
calculate the total integration time required to achieve a specified S/N, or to estimate the
limiting flux for a desired S/N.

In either case, overheads should not be included, as USPOT calculates them
independently.

Return to Table of Contents

5. FPI+
5.   FPI+

5.1   Specifications
5.1.1   Instrument Overview

5.1.1.1   Design
5.1.1.2   Angular Resolution

5.1.2   Performance
5.1.2.1   Filter Suite
5.1.2.2   Imaging Sensitivities
5.1.2.3   Camera Performance

5.2   Planning Observations
5.2.1   Observing Modes
5.2.2   Estimation of Exposure Times
5.2.3   Overheads

5.1 Specifications
Table of Contents

5.1   Specifications

https://www.sofia.usra.edu/science/proposing-and-observing/observers-handbook-cycle-7/1-introduction/11-sofia-and-its
http://forcast.sofia.usra.edu/cgi-bin/forcast/forcast_grisms_calc.cgi


5.1.1   Instrument Overview
5.1.1.1   Design
5.1.1.2   Angular Resolution

5.1.2   Performance
5.1.2.1   Filter Suite
5.1.2.2   Imaging Sensitivities
5.1.2.3   Camera Performance

Return to the Table of Contents for this section at any time by selecting Return to Table
of Contents . Users may also navigate through the entire Observer's Handbook by using
the complete Table of Contents menu to the right.

5.1   Specifications
5.1.1   Instrument Overview
The Focal Plane Imager (FPI+) is the standard tracking camera for the SOFIA telescope,
utilizing a science grade CCD sensor. Since the FPI+ is a subsystem of the SOFIA tracking
system, it is permanently installed on the telescope. Therefore, it can be operated on
every observing flight, either stand-alone or in parallel with any science instrument that
is mounted on the telescope.

As a science instrument, the FPI+ is intended to be used as a fast framerate imaging
photometer in the visual wavelength range. The highly configurable readout modes of
the camera can be adapted to the proposed observation needs. Examples for the
scientific use of the FPI+ include observations of stellar occultations and exo-planet
transits. The observations of stellar occultations benefit from SOFIA's mobility, e.g. the
abilities to fly into the shadow path and to avoid cloud cover. The observation of exo-
planet transits benefit from the much reduced scintillation noise at flight altitude,
resulting in higher signal-to-noise ratios in the light curves compared to ground based
measurements.

Return to Table of Contents 

5.1.1.1   Design
Most of the visual light passes SOFIA’s tertiary beam splitter (M3-1) before it is reflected
into the Nasmyth tube by the fully-reflective tertiary (M3-2). A significant amount of
visual light is not transmitted, but rather absorbed or reflected along with the longer,
infrared wavelengths. However, in the range between 480 nm to 800 nm, where the
visual-light CCD cameras are most sensitive, more than 50% of the light is transmitted to
the FPI+. The visual light continues through a set of four silver-coated folding mirrors
inside the so called delay line assembly of the telescope. This setup allows focusing the
FPI+ independently from the instrument at the telescope science instrument flange. A
pair of windows is installed between the Nasmyth tube and the delay line that create the
boundary between the stratospheric conditions in the telescope cavity and cabin
conditions inside the delay line assembly. Two eyepiece lenses are used to collimate the
telescope beam. Close to the camera is a pellicle beam splitter made of a nitrocellulose
membrane with 85% transmission. The beam splitter can be used to reflect a reticle into
the light path for camera alignment purposes. The last optical element in front of the
camera is an industrial ZEISS 1.4/85 mm Planar T* IR photo lens.



A double-carousel, filter wheel with six positions on each carousel is installed between
the reticle beam splitter and the ZEISS lens.

Return to Table of Contents 

5.1.1.2   Angular Resolution
The image quality at visible wavelengths on SOFIA is dominated by seeing and image
motion. The major source of seeing is the turbulent shear layer across the telescope
cavity, which causes scattering of the light from density fluctuations. These fluctuations
are strongly dependent on the mean static air density and the Mach number. The
resulting wavefront error is smaller at longer wavelengths. An average image size
between 3.5 arcseconds FWHM and 4 arcseconds FWHM can be expected for the FPI+,
depending on flight altitude and observed wavelength.

The CCD sensor of the FPI+ is an e2v CCD201-20 1024 x 1024 pixel frame transfer
EMCCD with a plate scale of 0.51 arcsec/pix and a square field of view (FOV) of 8.7 x 8.7
arcmin. The unvignetted FOV is a circular beam of approximately 9 arcmin diameter
centered on the FPI+ sensor. Pixel binning of 2x2, 4x4, etc. is available and can be used
to increase the frame rate and reduce the effective readout noise. In flight, the seeing
blur size of the observatory is at about 4 arcsec diameter. Therefore, a reduction of the
angular resolution by binning up to 4x4 (2x2 arcsec ) still provides critical sampling of
the seeing element.
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5.1.2   Performance
5.1.2.1   Filter Suite
The wavelength range of the FPI+ is 360 nm to 1100 nm. Six spectral filters are available
within this range. These are five Sloan Digital Sky Survey filters u’g’r’i’z’ and a Schott
RG1000 near-IR cut-on filter. Additionally, three neutral density (ND) filters can be used
to attenuate bright stars. The ND filters are required for the tracking function of the FPI+
and the optical densities are chosen in such a way that stars within the brightness range
of 0 < V mag < 16 can be imaged with an exposure time of 1 second. The Daylight filter
is also a requirement for telescope tracking to be able to acquire bright guide stars in
twilight.

 
Table 5-1: Filter Wheel Configuration

Filter Wheel Configuration
Carousel 1 Carousel 2

OPEN OPEN

Sloan u' ND 1

Sloan g' ND 2

Sloan r' ND 3

2



Sloan I' Daylight

Sloan z' Blocked

Carousel 1 Carousel 2

Table 5-1 shows the configuration of the FPI+ double filter wheel. Filters from carousel
one and two can be combined freely with a few exceptions. The daylight tracking filter
from carousel two can only be used with the OPEN position of carousel one to avoid non-
overlapping wavelength bands. The Blocked position cannot be selected for
observations, but instead is used for taking calibration data (bias frames, dark frames).

Filter Throughput

Figure 5-1 shows a plot of the FPI+ total system throughput, which includes a model for
atmospheric extinction, the calculated SOFIA telescope throughput, and the instrument
quantum efficiency. The filter spectral response has been measured and is added to the
plot. At the wavelengths where the Sloan u’ filter is transparent, other elements in the
FPI+ light path (dichroic tertiary mirror, protected silver coatings, ZEISS lens) are nearly
opaque. This results in a very low throughput (~0.5%) for the selection of the FPI+ with
the Sloan u’ filter.

Figure 5-1.

Figure 5-1. Total system throughput for Sloan filters, the Schott
RG1000 (daylight) filter and the OPEN FPI+ configuration.

Figure 5-2 is a plot of the neutral density filter transmittance vs. wavelength for the
three installed ND filters. Over the entire wavelength range of the FPI+, the ND filters
have the average optical density listed in Table 5-2. However, there is a wavelength
dependence of the optical density of all ND filters that has to be considered when using
the ND filters in conjunction with the Sloan filters. All filters are par focal despite their
different thicknesses, because they are installed in the parallel beam in front of the Zeiss
lens.

https://www.sofia.usra.edu/sites/default/files/Instruments/FPI_PLUS/Images_Media/OH7_ThroughputSpectral_FPI.png


Figure 5-2.

Figure 5-2. Transmittance curves of the FPI+ neutral density filters.

Table 5-2: Neutral Density Filter Properties
Neutral Density Filter Properties

Filter name Glass Type Thickness Average Optical Density

ND1 Schott NG9 4.0mm 4

ND2 Schott NG3 3.5mm 2.6

ND3 Schott NG4 2.8mm 1.3
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5.1.2.2   Imaging Sensitivities
The instrument sensitivity and resolution is provided to analyze the feasibility of
scientific investigations. The sensitivity of the FPI+ in its different Sloan filters was
measured in-flight as part of the camera upgrade verification. The selected star field had
targets with a wide range in V mag brightness (11.1 < V mag < 16.7). The full-frame
images were acquired with an exposure time of one second without pixel binning. The
SNR values in Figure 5-3 are calculated with the measured signal values and the known
noise sources. Displayed are the results of the OPEN configuration and the Sloan filters
u’, g’, r’, i’, z’ and DAYLIGHT.

Figure 5-3.

https://www.sofia.usra.edu/sites/default/files/Instruments/FPI_PLUS/Images_Media/OH7_ND_filters_FLITECAM.jpeg


Figure 5-3. Signal to Noise Ratio (SNR) for point sources imaged with
FPI+ at texp = 1 sec. Displayed is the OPEN broadband configuration
as well as the spectral Sloan filters u’, g’, r’, i', z’ and the FPI+
DAYLIGHT filter.
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5.1.2.3   Camera Performance
 
Table 5-3: Camera Modes and Performance

Camera Modes and Performance

FPI+ Observing Mode
Horizontal

Clock
Rate

Bit
Depth

Gain
[e-

/DU]

Minimum
Read
Noise

FPI+
Tracking
Possible

FAST_STARE 10 MHz 14 bit 10.7 45.9 e-
rms No

FPI_TRACK_MEDIUM_STARE 5 MHz 14 bit 8.9 36.1 e-
rms Yes

FPI_TRACK_SLOW_STARE 1 MHz 16 bit 0.7 6.0 e- rms Yes

With the camera’s multi-stage thermo-electric cooler, it is possible to achieve sensor
temperatures of 100˚ C below ambient temperature. The measured dark current rate at
a sensor temperature of -85˚ C, the recommended setting, is 0.001 e-/pixel/second.

https://www.sofia.usra.edu/sites/default/files/Instruments/FPI_PLUS/Images_Media/OH7_SNRspectral_FLITECAM.png


The frame rates listed in Table 5-4 are for the full frame. When sub-frames are used
(without FPI+ tracking) the achievable rates can be increased. The frame rate then
depends on the sub-frame size and its position on the sensor.

 
Table 5-4: Frame Rates (frames per sec) for the Acquisition of Full Frames

Frame Rates (frames per sec) for the Acquisition of Full Frames
Size FAST_STARE MEDIUM_STARE SLOW_STARE

1x1 8.9 3.8 0.9

2x2 17.5 6.9 1.7

4x4 33.6 11 3.2
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5.2   Planning Observations

5.2.1   Observing Modes
FPI+ is the standard tracking camera for the SOFIA telescope, and therefore does not
require background ellimination techniques to be employed. The FPI+ science
instrument offers one imaging configuration with three observing
modes: FPI_TRACK_SLOW_STARE, FPI_TRACK_MEDIUM_STARE and FAST_STARE. There is
no slit for spectroscopy available. The observing modes are described below.



FPI_TRACK_SLOW_STARE (1 MHz)
Allows image acquisition while tracking on the same images. The parallel tracking
requires a resasonably bright guide star in the field of view and exposure times
should not exceed 4000 milliseconds.
 
FPI_TRACK_MEDIUM_STARE (5MHz)
The higher readout rate results in a higher associated readout noise but also in
faster frame rates. The parallel tracking requires a resasonably bright guide star in
the field of view and exposure times should not exceed 4000 milliseconds.
 
FPI_TRACK_FAST_STARE (10 MHz)
The fastest readout currently possible with FPI+. This mode does not allow FPI+
tracking on the science images--however FFI tracking can be used.
 

The two slower observing modes offer, but do not require, tracking in the FPI+ in parallel
to the acquisition of science data. However, simultaneous FPI+ tracking does impose
certain restrictions on the camera acquisition setting. Acquisition setting restrictions for
simultaneous FPI+ tracking are as follows:

Image frame size: Full frame
Pixel binning: 1x1, 2x2, 4x4
Exposure time: between 100 and 4,000 ms for best tracking performance
Target: Track star available in FPI+ field of view

With simultaneous FPI+ tracking, a target position accuracy of 0.17 arcsec rms has been
measured over a two hour time period. There is no positional drift of the target evident.

Alternatively, all of the three observing modes can be used with tracking in the Fine Field
Imager (FFI; the tracking camera on the telescope front ring) or without any tracking at
all. This allows the selection of an arbitrary sub-frame and binning factors along with the
choice of very short (or longer) exposure times in the FPI+. With FFI tracking, positional
drifts of the target of 3.9 arcsec per hour have been observed.
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5.2.2   Estimation of Exposure Times
The sensitivities of the FPI+ with all spectral filter options have been implemented into
the SOFIA Instrument Time Estimator (SITE). This online tool allows the estimation of
exposure times to achieve a desired signal to noise ratio.

Return to Table of Contents

5.2.3   Overheads
Generally, observations can be set up very efficiently and overheads are small. For each
observation, bias frames and dark frames will be acquired for image calibration. These
calibration acquisitions will result in additional overheads.

The overhead is the instrument set-up time per observation in minutes. It is calculated
with:

https://dcs.arc.nasa.gov/proposalDevelopment/SITE/index.jsp


Overhead = A * Repeat + B

where A = 0.013 sec, B = 200 sec, and Repeat is the total number of acquisitions with
the specified exposure time.

The entire duration of the observation is:

Duration = ExposureTime * Repeat + Overhead

Observations are done in the frame transfer mode. This means parameter A represents
the time for the charge transfer on the sensor and has a value of 1 to 3.4 µs.

The setup time is less than 20 seconds and approximately 3 minutes should be planned
for the acquisition of bias and dark calibration frames.
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6.1   Specifications
6.1.1   Instrument Overview
The German REceiver for Astronomy at Terahertz Frequencies (GREAT) is a dual channel
heterodyne instrument that will provide high resolution spectra (up to R = 10 ) in several
frequency windows in the 0.490–4.74477749 THz range.

The front-end unit consists of two independent dewars that operate simultaneously. Each
dewar contains one of the following channels:

upGREAT Low Frequency Array (LFA)

The LFA is a 14-pixel array (two polarizations and times; 7 pixels) arranged in a
hexagonal geometry with a central beam. The current tuning range of the LFA is
approximately 1.810–2.070 THz.
 
upGREAT High Frequency Array (HFA)
The HFA is a 7-pixel array arranged in a hexagonal geometry with a central beam.
The tuning range of the HFA is limited to the [OI] frequency of 4.74477749 THz (+/-
100 km/s LSR velocity).
 
4GREAT
4GREAT consists of four co-aligned (to within a few arcsec) pixels at four different
frequencies. The tuning ranges of these pixels are 490–635 GHz (Herschel/HIFI band
1), 890–1100 GHz (Herschel/HIFI band 4), 1200–1500 GHz (GREAT L1 channel), and
2490–2590 GHz (GREAT M channel).
 

The GREAT instrument uses Fast Fourier Transform (FFT) spectrometers as backends.
Each XFFTS spectrometer has a bandwidth of 2.5 GHz and 64,000 channels, providing a
resolution of 44 kHz. The beam size is close to the diffraction limit—about 14 arcsec at
160 μm.

A detailed description of the GREAT instrument and its performance during Basic Science
can be found in the GREAT special issue (Heyminck et al. 2012, A&A, 542, L1). The LFA is
described in Risacher et al. 2016 (A&A, 595, A34). Because the instrument is regularly
being upgraded and its performance improved, always check the GREAT website for the
latest information.
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6.1.1.1   Design
Heterodyne receivers work by mixing the signal from a source at a given frequency ν
with that from a local oscillator (LO) at a specified (and precisely controlled) frequency
ν  and amplifying the result. The mixing results in two frequency bands, called the
signal and the image bands, located symmetrically on either side of ν  and separated
from ν  by the intermediate frequency ν  = |ν – ν |. GREAT operates in double sideband
mode, i.e. both the image and signal bands are equally sensitive to incoming radiation.
By definition the spectral line of interest is always placed in the signal band, which can
be chosen to be either above (Upper Sideband, USB) or below the LO frequency (Lower
Sideband, LSB); see Figure 6-1. For sources rich in spectral lines, care has to be taken so
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that a spectral line in the image band does not overlap or blend with the line in the
signal band.

Figure 6-1.

Figure 6-1. Schematics of one GREAT receiver channel. The second
mixer-stage is needed to match the operational frequencies of the first
mixer-element to that of the microwave spectrometer.

Return to Table of Contents

6.1.1.2   Configurations
The channels that are currently operational are listed in Table 6-1. Not every frequency
in each tuning range has been checked, so there may be gaps where the LOs do not
provide enough power to pump the mixer.

 
Table 6-1: GREAT Configurations

GREAT Configurations
Front-

End
Frequencies

(GHz) Lines of Interest DSB  Receiver
Temperatures (K)

upGREAT
LFA 1810–2070 [OI], [CΙΙ], CO, OH π 1000

upGREAT
HFA 4744.77749 [OI] 1100

4GREAT

490–635 NH , [CI], CO, CH 120

890–1100 CO, CS 350

1200–1500 [NII], CO, OD, HCN,
SH, H D 800

5
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2490–2590 OH π , OH π  , HD 1500

Front-
End

Frequencies
(GHz) Lines of Interest DSB  Receiver

Temperatures (K)

Herschel/HIFI Band 1
Herschel/HIFI Band 4
GREAT L1 channel
GREAT M channel
DSB = Dual Sideband

 
In Cycle 7, GREAT offers two configurations:

upGREAT LFA with upGREAT HFA
This configuration employs the Low Frequency Array (LFA) in one dewar and the
High Frequency Array (HFA) in the second dewar. The LFA array consists of 2 x 7
pixels (H and V polarizations) and the HFA consists of seven pixels. At the frequency
of the CII line, 1900.536 GHz, the frequency coverage of both LFA polarizations
overlap and all 14 pixels are in operation. At higher and lower frequencies, only one
LFA polarization will be available and only seven LFA pixels can be operated at a
given time.
 
4GREAT with upGREAT HFA
This configuration implements 4GREAT in one dewar and the HFA in the second
dewar. The 4GREAT pixels are aligned on the sky to within several arcseconds.
 

Each of the two installed mixers is provided with XFFTS Fast Fourier Transform
spectrometers. The XFFTS has a 2.5 GHz bandwidth and 64,000 channels, providing a
resolution of 44 kHz.

The usable instantaneous bandwidth is generally less than that covered by the XFFTS,
generally about 1-1.5 GHz. The tuning range of the HFA is limited because the LO (a
Quantum Cascade Laser) can only be tuned in discrete steps.
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6.1.2   Performance
6.1.2.1   Imaging Sensitivities
The GREAT sensitivities and integration times are calculated with the GREAT time
estimator. Presented here are the background of these calculations and some worked
out examples. Because of the way a heterodyne receiver is calibrated (by measuring the
receiver temperature, T , with a hot and a cold load), the logical intensity unit for a
heterodyne observation is temperature, expressed in Kelvin (K). Either the antenna
temperature, T  (the asterisk refers to values after correction for sky transmission,
telescope losses and rearward spillover, see e.g. Kutner and Ulich, ApJ, 250, 341 (1981))
or the main beam brightness temperature, T , are used. Similarly, the noise is
expressed in temperature units as well, ΔTA * or ΔT , and the sensitivity (or signal-to-
noise ratio) of the observations is given by the ratio of the source temperature and the
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rms temperature of the spectrum. In order to calculate these quantities, we first must
estimate the single sideband (SSB) system temperature, T , which also includes losses
from the atmosphere and the telescope. T  is given by:

(Eq.6-1)
T  = 2 x [T  + η  x T  + η  x T  + Tt  ] /( η  x η )

where
T  is the dual sideband (DSB) receiver temperature
T  is the radiation temperature of the sky
T  is the continuum temperature of the source; This term is usually completely negligible
(unless observing an extremely bright object such as Jupiter, Saturn, or Sgr B2) and is
therefore set to 0 in the GREAT time estimator.
T  is the Rayleigh-Jeans telescope temperature
η  is the fraction of radiation transmitted through the atmosphere
η  is the efficiency of the telescope, which includes ohmic losses and spillover
 
The factor 2 in Equation 6-1 assumes that the noise temperature is the same in both
signal and image band, which is true for the HEB mixers used by GREAT. The
transmission of the atmosphere, η , at the altitude, observing frequency, and airmass
that we plan to observe at can be estimated using the atmospheric transmission code
ATRAN. The GREAT time estimator calls ATRAN directly, so those estimating the
integration time needed by using the time estimator have no need to run ATRAN
separately. T  depends on η  and the ambient temperature of the sky (T ) where the
signal is absorbed and can be derived from Equation 6-2.

(Eq. 6-2)
T  = J(T ) x (1 - η )

where J(T ) is the mean Rayleigh-Jeans (R-J) temperature of the atmosphere, which we
assume to have a physical temperature of 220 K at 41,000 ft, resulting in J(T ) = 177.5
K at 1.9 THz. Likewise the telescope temperature, T , is related to η  by Equation 6-3:

(Eq. 6-3)
T  = J  x (1 - η )

where J  is the radiation temperature of the telescope, with a physical temperature ~
230 K (J  = 187.4 K at 1.9 THz). If we assume an η  of 0.92, then T  = 14.8 K.

As an example, let us calculate the system temperature at the [CII] fine structure line at
157.74 μm (1.9005369 THz). In this example we calculate what we would have at the
beginning of a flight, when we are still at low altitude. We therefore assume that we fly at
an altitude of 39,000 ft and observe at an elevation of 30 degree. For a standard
atmospheric model this corresponds to a transmission of ~ 76%, which gives T  = 42.6
K. For a receiver temperature T  = 1100 K, Equation 6-1 therefore predicts a single
sideband system temperature T  = 3301 K when observing the sky.

Now we are ready to calculate the sensitivity. The rms antenna temperature, (corrected
for the atmospheric absorption, and telescope losses), ΔT , for both position switching
and beam switching is given by Equation 6-4
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(Eq. 6-4)
ΔT  = (2 x T  x κ ) x (t x Δν)

where k is the backend degradation factor, t is the total integration time of the number
of on and off pairs that we plan to take, and Δν is the frequency resolution of our spectra.
Strictly speaking, Δν is the noise bandwidth, which can be slightly different than the
frequency resolution, depending on the design of the spectrometer. For our example we
expect the Full Width Half Maximum (FWHM) of the line to be a few km/s, and we will
therefore calculate the rms for a velocity resolution of 1 km/s, corresponding to a
frequency resolution of 6.3 MHz. Since the GREAT backends have much higher
resolution, this is not a problem. We can easily bin the spectrum to our desired velocity
resolution. For an observation with three pairs of 40 seconds in each beam, or t = 4 min,
and assuming the backend degradation factor k=1, we then find ΔT  = 0.17 K, which is
the one sigma rms antenna temperature.

To convert antenna temperature to brightness temperature T , we have to make one
more correction as shown in Equation 6-5:

(Eq. 6-5)
T  = T / η

where η  is the forward scattering efficiency, usually measured for a very extended
source (like the Moon). For GREAT η  = 0.97. Therefore our brightness rms temperature,
ΔT  = 0.18 K . Note: The GREAT time estimator assumes the line temperature in T , and
not in main beam brightness temperature, T  = T /η  , which is for a source that just
fills the main beam.

If we want to express our results in flux density, Sn, rather than brightness temperature,
we can convert antenna temperature, T , to flux density, S , using the standard relation
given in Equation 6-6:

(Eq. 6-6)
S  = 2 x κ x η  x T / A

where κ is the Boltzmann constant, and A  is the effective area of the telescope. A  is
related to the geometrical surface area of the telescope, Ag, by the aperture efficiency,
η ,
i.e. A  = η  x A . For the measured main beam efficiency in early April 2013 (0.67) and a
Half Power Beam Width (HPBW) of ~ 14.1 arcsec (+/- 0.3 arcsec) an aperture efficiency
of 55 +/- 2 % is derived. Equation 6-7 yields the following simple form for the 2.5 m
SOFIA telescope:

(Eq. 6-7)
S (Jy) = 971 x T (K) or within errors ~ 1000 x T (K)

Normally we use Jy only for spatially unresolved sources, but we can also use Equation 6-
7 to convert line intensities into W/m , which maybe a more familiar unit for the far
infrared community. If we assume that the [CII] line we are observing is a Gaussian with
a Full With Half Maximum (FWHM) of = 5 km/s, i.e. 31.8 MHz, the integrated line
intensity is given by 1.065 x T  x Δν, where Δν = 31.8 MHz. If we take T  equal to our
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rms antenna temperature, we find using Equation 6-7 that our four minute integration
therefore corresponds to a one sigma brightness limit of ~ 6.1 10-17 W/m  for a 5 km/s
wide line observed with 1 km/s resolution. If we only aim for a detection, we can
probably degrade the resolution to 2 km/s. In this case we gain a square root of 2, and
therefore our one sigma detection limit is 4.3⋅10  W/m .

This is the reverse of what is typical when writing a proposal, when the proposer has an
estimate how wide and how bright the line is expected to be and knows what signal to
noise is needed for the analysis. Assume we want to observe the [CII] 158 μm line in T
Tauri, a young low-mass star. Podio et al. (2012, A&A, 545, A44) find a line intensity of
7.5 ⋅10  W m  for the Herschel PACS observations, which are unresolved in velocity (the
PACS velocity resolution is ~ 240 km/s for [CII]). Here we want to velocity resolve the line
to see if it is outflow dominated or whether it is emitted from a circumstellar disk or both.
We therefore need a velocity resolution of 1 km/s or better. If we assume that the line is
outflow dominated with a FWHM of say 20 km/s (127.2 MHz; little or no contribution from
the circumstellar disk) we get a peak antenna temperature (using Equation 6-7) of 0.52 K
or a radiation temperature T  = 0.55 K. In this case we want a SNR of at least 10 and a
velocity resolution of 1 km/s or better. Let’s check whether it is feasible. If we plug in the
values we have in the GREAT time estimator (assume 40 degrees elevation, standard
atmosphere, and we fly at 41,000 ft) or we can estimate it from the equations given
above.

With these assumptions ATRAN gives us an atmospheric transmission of 0.86 integrated
over the receiver band-pass. The receiver temperature is 1100 K (DSB). Using Equation
6-2, we find that the sky only adds 24.9 K to the system temperature and from Equation
6-1 we therefore get T  = 2881 K. Since we want to reach a signal to noise of 10, the
rms antenna temperature ΔT  = 0.052 K. We can now solve for the integration time
using Equation 6-4, where we set Δν = 6.338 MHz (1 km/s resolution). In this case t =
1937 sec or 32.3 min. The PACS observations show the emission to be compact, so we
can do the observations in Dual Beam Switching Mode (DBS; see Section 6.2.1.1), with a
chop throw of 60 arcsecond. Both DBS and Total Power (TP) modes are currently
estimated to have an overhead of 100% and a setup time for tuning and calibration of
two minutes (which get added when entering the observations in USPOT, the SOFIA
proposal tool). Our observation would therefore take 60 minutes, which is completely
feasible. The GREAT exposure time calculator gives t = 1930 sec. The difference is
negligible.

Sensitivity calculations for an On-the-Fly (OTF) map, when data are taken while the
telescope is scanning), are done a bit differently. For example, for an OTF map of the
[CII] line (Half Power Beam Width, HPBW ~ 14 arcsec), we need to sample the beam
about every 7 arcsec. If we read out the average once per second, for example, this
means that we scan with a rate of 7 arcsec/second. To do a 3 arcmin scan will therefore
take 26 sec, resulting in 26 map points, let us make it 27, to get an odd number of
points. We therefore need to spend (1 second) * (√27) = 5.2 seconds on the reference
position in total power mode. We ignore the time it takes the telescope to slew to the
next row and any time needed for calibration. For a 3 x 3 arcmin  map, i.e. 27 x 27
positions with a cell size of 7 x 7 arcsec . The integration time for each row is therefore
5.2 +27 seconds or 32.2 seconds/row. The total integration time for the map is therefore
14.5 minutes. We definitely want to do one repeat, so the total integration time is
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therefore 29 minutes. For all observing modes, we assume a 100% overhead and 2-
minute setup for tuning and calibration. The total duration of the two maps is therefore
61.9 minutes. Thus, a 3 x 3 arcmin  map in the [C II] line is entirely feasible.

Our 3 by 3 arcmin  map with one repeat has an integration time of 2 seconds per map
point. For typical observing conditions (41,000 feet, 30 degrees elevation) the GREAT
time estimator (settings: TP OTF map, Non=27, Classic OTF; see Section 6.2.3) gives us
an rms temperature/map point of 0.9 K for a velocity resolution of 1 km/s.
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This section describes the GREAT instrument and the available observing modes. It also
contains the information required to estimate observing times in individual modes and
examples of each.

If the frequency of interest has not already been used by GREAT, please contact the
GREAT team to ensure that observing the line is feasible. There may be gaps where the
broadband Local Oscillators do not provide enough power to pump the mixers.

Note: Allan variance affects the capabilities of GREAT and requires special attention
when planning observations, see Section 6.2.1.3 for details.
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6.2.1   Observing Modes Overview
Two main observing modes are currently offered: Total Power (TP) and Beam Switching
(BSW), the latter of which is available in either Single Beam Switching (SBS) or Dual
Beam Switching modes (DBS).

Total Power Mode
In Total Power mode, the telescope alternates between the target and a nearby
reference position that is free of emission. From the difference of the target and
reference spectra, often called ON–OFF, the GREAT software produces a spectrum,
which is largely corrected for atmospheric and instrumental effects. The integration
time in this mode depends on the stability of the receiver and how fast the
atmosphere fluctuates. The on-source time is typically ≤ 30 seconds, but can be
adjusted during the flight if necessary. If shorter integration times are used, one
gets a better cancellation of the sky fluctuations, but adds to overheads and

https://www.sofia.usra.edu/science/contact


therefore reduces the observing efficiency. The ON–OFF cycle is repeated until the
required sensitivity is reached.
 
Total Power mode is used when observing one or a few positions in an extended
source or crowded region, such as a large molecular cloud. If the reference position
is far from the target position, e.g., 30 arcmin or more, changes in the sky
background will result in poor baselines. If the reference position cannot be
identified to within 30 arcmin from the source position, an intermediate reference
position may be selected for the observations and used to measure this
intermediate reference position relative to the far-away, clean reference position.
Any contamination in the original spectrum due to emission in the intermediate
reference position can then be added back into the data.
 
Beam Switching Mode
In SBS mode, the secondary mirror is chopping between the target (signal) and a
sky position (reference) that is determined by a chop throw and a chop angle. In
DBS mode, the telescope then nods so that the beam that was on the reference
position is on the source, and the beam that was on the source is at a new reference
position (at the distance of the chop throw, and at the chop angle + 180 degrees).
Thus, in SBS mode, there is a single reference position, while in DBS mode, there
are two reference positions that are equidistant and on opposite sides of the source.
 
Chopping in either BSW mode is typically done at a rate between 1 and 2.5 Hz. The
maximum chop throw should be < 5 arcmin, set by the limits of the chopping
secondary. Because the time between the on- and off-source measurements is small
(usually ~1 s), this mode results in better sky cancellation and hence better
baseline stability. Beam switching is typically used for point or compact sources,
because the chop throw has to be larger than half of the source size. Smaller chop
throws (60–120 arcsec) are preferred, as large chop throws distort the beam (coma)
and uncertainties in the chop throw result in pointing errors if there is a difference
between the chop throw and the nod.
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6.2.1.1   AOTs
GREAT offers four standard methods of observation through Astronomical Observation
Templates (AOTs) in USPOT: Single Point, Raster Mapping, On the Fly (OTF) Mapping, and
OTF Array Mapping. Each AOT is run in either Total Power or Beam Switching mode.

Single Point
Single Point is used for integrations at a single position on the sky. It is typically
used to observe faint sources that require long integration times, or for point
sources (sources that are smaller than the beam).
 
Raster
Raster mapping is essentially a collection of single point observations used for
creating small maps or strips, where one needs relatively long integration times per
map point. A typical example would be a small 3 x 3 map (9 points) with 30 seconds
per map point.



 
In Total Power mode, the telescope nods to a single OFF position away from the
source--which is tempurally expensive and results in worse baselines. Total Power
mode however is very useful in cases where there is a lot of clutter in the region
immedately surrounding the source. 
 
In BSW, the telescope can more quickly chop then adjust the secondary to form
form a pseudo map off-source.
 
On the Fly and On the Fly Array
In an OTF map, the telescope scans along a row, while the backends are
continuously integrating the incoming signal. An average is recorded after the
telescope has moved a fraction (typically half to one third) of the beam size. Each
average therefore corresponds to a point on the sky with a finite width.
 
In Total Power mode, each scan is preceded by a measurement of a reference
position, where it integrates √N times the integration time per point, where N is the
number of points in a row. After a row is completed, the telescope steps about half
a beam width in the orthagonal direction and begins a new scan along with
reference measurement. 
 
In Beam Switching mode, the telescope chops while scanning. After a row is
completed, the telescope steps about half a beam width in the orthagonal direction
and begins a new scan. Note that no additional dedicated reference measurement is
needed as in Total Power mode.
 
This process is repeated until a map of the desired size is constructed. The entire
map is repeated until the required sensitivity is reached. An individual map must be
rectangular. For a uniform map, the spacing between points along a row (the step
size) and the spacing between rows is specified to be the same. When the spacing
between rows is specified to be of different values, it is an OTF Array map.
 
OTF observations are particularly efficient for larger maps of bright lines--however,
even for a small map OTF is more efficient as long as the line is bright enough so
that one can reach the required signal to noise within several repeats of the map.
 
When performing observations in Total Power mode, OTF mapping is more efficient
than Raster mapping only if the integration time per position is small. Thus, OTF is
the preferred mode when mapping the distribution of a relatively bright line over a
large area (e.g., a map of the [C II] 158 μm line in a molecular cloud). For faint
emission, it is often better to use Raster mapping. The size of the scan is limited by
the stability of the receiver and atmosphere and the time spent on the scan is
therefore typically limited to less than 30 seconds (20 seconds for the H channel or
HFA) in Total Power mode. The typical integration time per position is 1 second per
map point, and is usually between 0.3 and 2.0 seconds. For a large map one
therefore has to break up the map into a number of sub-maps.
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6.2.1.2   Spectroscopic Stabilitiy Limitations
The spectroscopic stability (Allan variance) sets limits to the operation of a heterodyne
instrument like GREAT. 

BSW mode typically operates with 2.5 Hz, and therefore limitations are mainly set by the
atmospheric stability and long integrations are typically performed. As such, integrations
with 30 sec phase times are typically implemented for Single Point and OTF observations
to achieve optimum spectroscopic stability. For weak and/or broad-line projects, DBS is
recommended. No noticeable performance degradation has been observed from using
SBS instead of DBS for other projects.

If TP mode observations are requested, the situation becomes complicated and multi-
dimensional: science with linewidth more than a few 100 MHz and position changes
greater than 10-15 arcmin between the ON and OFF positions become increasingly
difficult, though not impossible. The actual impacts will depend on frequency, weather
conditions, stability of the sky, elevation of the observation, and on the detector used.
Contact a GREAT Instrument Scientist to discuss possible mitigations and their impact on
the overheads to be assumed.
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6.2.2   Estimation of Exposure Times
Estimations of exposure times for GREAT can be made using the SOFIA Instrument Time
Estimator (SITE). SITE is a web-based tool that calculates either the signal-to-noise ratio
for a given line brightness and integration time, or the integration time needed to reach
a certain RMS noise level for either one point on the sky or per map position for an OTF
map in Total Power mode. These integration times do not include tuning, chopping,
slewing, and other observatory overheads. The total time, including all overheads, is
determined in USPOT after entering the time calculated by SITE. SITE is also useful to
determine in which sideband the line of interest is best put, taking into account the
atmospheric transmission. System temperatures for the line in the USB or LSB are given,
as well as a plot showing the line locations for either LO tuning in comparison with the
atmospheric transmission.

The time estimator calculates the time required to reach an rms brightness
temperature ΔT  , (T T / η , where η  is the forward scattering efficiency and equal
to 0.97 for GREAT at all bands) for a line at a frequency ν by solving the standard
radiometric formula for a single point. 

ΔT = (2T ) / (tΔν)  

Here, ΔT  is the antenna temperature corrected for ohmic losses and rear
spillover. T  is the single sideband system temperature outside the earth's atmosphere,
t is the integration time and Δν is the desired frequency resolution. This formula applies
when t  = t  , as is the case for single point total power observations, and all beam-
switched observations.

For Total Power OTF mapping observations the corresponding equation is

T = T  (1 + (1 / N ) )  / (t Δν)

R* R* = A* mb mb

A* sys 0.5 

A*

sys

ON OFF

A* sys on 0.5 0.5 0.5
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where t the ON-source integration time per map point only and Non is the number of on-
source positions for each off-source observation.

The calculator uses the most recent measured receiver temperatures and calls the
atmospheric transmission program ATRAN to estimate the atmospheric transmission for
a given frequency, altitude, telescope elevation and water vapor overburden. The
transmission is used to calculate T , assuming an ambient temperature of the
atmosphere of 220 K and a telescope temperature of 230 K.

GREAT is a dual sideband receiver, meaning it receives signal in two frequency bands,
the upper sideband (USB) and the lower sideband (LSB). The transmission plot shows the
location of both sidebands (separated by +/- 1.5 GHz for the LFA, HFA, and 4GREAT
bands 3 and 4, and +/- 5.5 GHz for 4GREAT bands 1 and 2). It is possible to put the line
to be observed in either the USB or the LSB (the two possible tunings). Integration times
are calculated for both tunings. If the transmission is poor at the lower frequency but
very good at the higher frequency, you would tune your line to the lower sideband. If the
opposite is true you would tune your line to the upper sideband (USB).

Description of SITE Input Paramters

Type of Observation
Select "Single Point or Beam Switch OTF/Raster Map" for single point observations
in both total power and beam-switched mode, and OTF/Raster map observations in
beam-switched mode. Select "TP OTF/Raster Map" for OTF/Raster maps in total
power mode.

Rest Frequency
Enter the rest frequency (in THz, using 7 decimal places) of the line you wish to
observe. The current tuning ranges for the GREAT receivers are listed in Table 6-1.

Frequency or Velocity Resolution
Enter the frequency (in MHz; select the "MHz" radio button) or velocity (in km/s;
select the "km/s" radio button) resolution that you want in your final spectrum. Line
Width: Enter the frequency (in MHz; select the "MHz" radio button) or velocity (in
km/s; select the "km/s" radio button) window that will be used to calculate the
atmospheric transmission. Modifying this parameter may be important if the line
you wish to observe falls close to a narrow atmospheric feature.

Total Power Map Parameters
For OTF maps: Enter t he number of on positions (dumps) in each OTF scan row in
the Non field or have the time estimator calculate this value for you. If you choose
to have the estimator calculate it, you should enter the dimensions of the map (in
arcsec) and select a "Map Type" option (Classical OTF or Array OTF). For a Classical
OTF map, the "Map Size" refers to the area mapped by the central pixel only. For an
Array OTF map, the "Map Size" refers to the area that will be fully-sampled (i.e., the
array width is added to the length of each scan). The Array OTF map should only be
selected if the frequency falls within the tuning range of the LFA or HFA (see table
above). With the inputs, the calculator evaluates scanning in both x- and y-
directions, and selects the direction that has fewer scan lines. It then estimates Non
using the length of the scans and a frequency-based receiver stability time. The

sys



step sizes assumed for each frequency band are: HFA: 3 arcsec, LFA: 6 arcsec,
4GREAT1: 25 arcsec, 4GREAT2: 12 arcsec, 4GREAT3: 8 arcsec, 4GREAT4: 5 arcsec.
Note that there are many ways to configure a mapping observation, and the
calculated value of Non is only one of many possible values. For Raster maps: Enter
the number of on positions that will be used for each reference position in the Non
field. You may ignore the Map Size and Map Type fields.

Signal to Noise Ratio / Integration Time
If the SNR radio button is selected, enter the desired signal to noise ratio in this field
and the estimated line strength in the Brightness Temperature field. The time
estimator will calculate the integration time required to reach this SNR. If the
Integration Time radio button is selected, enter the integration time (in seconds) for
your observation. If your observation is a Total Power OTF map or a Total Power
raster map, enter the ON-source time per map point. Otherwise, enter the ON+OFF
integration time. The time estimator will calculate the 1-sigma rms sensitivity (in
units of T *) based on the input integration time.

Brightness Temperature T  (K)
Enter the estimate of the peak brightness temperature of your line. This field only
appears if the SNR radio button is selected (see above). As is the case for other
heterodyne receivers that use hot and cold loads to measure the receiver
temperature, the intensity units are Kelvin (K). The intensity scale used in the online
tool is brightness temperature T . This relates to the measured antenna
temperature as T T η  and the main beam temperature (corrected for losses in
the side lobes) as T  = T /η  . The main beam efficiency has been measured from
planetary observations and determined to be 0.70 for the LFA, 0.63 for the HFA. For
the latest 4GREAT main beam efficiencies, please contact the Help-Desk. A detailed
description of the GREAT intensity calibration is given in Section 6.1.2.2, which also
contains worked examples for different observing modes and unit conversions.

Source Velocity
Enter the source velocity (in km/s) in the LSR reference frame.

Observer Velocity
Enter the velocity of the observatory with respect to the LSR on the date of the
observation. If this is unknown, you may either leave the default (0 km/s) or enter
the date, time, coordinates, and location for your observation and the time
estimator will calculate the observer velcity for you. Note that if your desired line
rest frequency falls close to or in an atmospheric absorption feature, you may still
be able to observe the line if you choose the right time of the year and your source
is blue or redshifted to move you out of the atmospheric feature.
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6.2.3   OTF Technical Details
In general, OTF schemes are flexible and the detailed map parameters will depend on the
goals of the project. The two OTF mapping options for upGREAT are the classic OTF
(which can be used with the upGREAT arrays or the single-pixel GREAT channels) and
OTF Array (which can only be used with the LFA or HFA).

R

R*

R*

A* = R* fss

MB R* mb

mailto:sofia_help@sofia.usra.edu


Both AOTs can be executed as either Beam Switching mode or Total Power mode. Some
things to consider when deciding between these two modes are:

Efficiency
BSW maps spend an equal amount of time on the ON and OFF positions. In contrast,
Total Power maps spend less time on the OFF position and are therefore more
efficient.
 
Baseline Stability
BSW observations have better baseline stability. If the source is expected to have
faint and/or wide lines, then BSW would be preferred. If the source is expected to
have bright and/or narrow lines, then the baseline quality is less of an issue.
 
Reference positions
For a BSW map, there needs to be an emission-free region on the sky that is the
same size as the OTF map and within a few arminutes of the map. This can
sometimes be a challenge, especially in crowded regions. For Total Power maps,
only single emission-free reference position is needed, and it can be farther away
from the map (up to 30 arcmin, although baselines will be better for closer
reference positions).
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6.2.3.1   Coordinates and Array Geometry
Because upGREAT maps can be rotated relative to standard sky coordinates (e.g.,
J2000), they have their own coordinate system, defined by x and y. With a map rotation
of 0 degrees, the +x axis is aligned with the +RA axis, and the +y axis is aligned with the
+Dec axis (Fig. 6-2). Map rotation angle increases in the counter-clockwise direction, and
the map angle can range from -360° to +360°. Scans in the x-direction are parallel to the
x-axis, and scans in the y-direction are parallel to the y-axis.

Figure 6-2.

Figure 6-2. Left, The x/y map coordinate system is aligned with

https://www.sofia.usra.edu/sites/default/files/Instruments/GREAT/Images_Media/GREAT_map_coordinates_OH7.png


RA/Dec (J2000) for a map angle of 0°. Right, The x/y coordinate
system at a map angle of +30°. The angle is measured in the counter-
clockwise direction.

The upGREAT Low Frequency Array (2x7 beam, H and V polarizations) and High
Frequency Array (HFA) are arranged in a hexagonal pattern with a central beam. The
spacings between the beams are approximately 2 beam widths (31.7 arcsec for the LFA,
13.8 arcsec for the HFA). For efficient mapping, the array is typically rotated by 19.1
degrees relative to the scan direction, resulting in a projected pixel spacing of 10.4
arcsec for the LFA and 4.6 arecsec for the HFA (see Fig. 6-3). The array can be rotated
independent of scanning direction for maximum flexibility of observation planning.

Figure 6-3.

Figure 6-3. Left, The configuration of an upGREAT array. The
numbers 0-6 mark the pixel numbers of the array, and the separation
between the pixels, r, is 31.7 arcsec for the LFA, and 13.8 arcsec for
the HFA. Right, An upGREAT array, rotated by -19.1° (pixel 1 is
labeled) with arrows indicating the scan direction. The projected pixel
spacing perpendicular to the scan direction is 10.4 arcsec for the LFA,
and 4.6 arcsec for the HFA.

When creating a mapping strategy, observers will have to weigh many factors, including
the area to be mapped, the required integration time per point, and of course the
scientific objectives. Examples given in Section 6.2.3.2 result in fully (or overly) sampled
maps of the central region, but require different amounts of time to complete, and have
very different integration times and coverage outside of the central region. In the Section
6.2.3.2a, a point in the central region may be mapped by only a few pixels, while in the
Section 6.2.3.2b, the entire central region is mapped by each pixel . These are all
important pieces of information to consider when planning mapping observations with
upGREAT.
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6.2.3.2   OTF Mapping
The classic OTF mapping is possible with either an upGREAT array or a single-pixel
channel, and is the only OTF mapping option with a single pixel. In classic OTF mapping,
each pixel makes a rectangular map based on the step size along the scan row, and the
spacing between the scan rows. In the case of an upGREAT array, the result is seven
rectangular maps; the amount of overlap between the maps depends on the map
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parameters (see Section 6.2.3.2a). In the case of a single-pixel GREAT channel, the result
is a single rectangular map (see Section 6.2.3.2b).
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6.2.3.2a   upGREAT LFA Channel
In this example, we design an observation using the LFA such that the final map is
composed of 14 fully sampled maps (one from each of the 2x7 pixels) of the central
region. To ensure that all pixels cover the central region of the map during each scan,
the scans start and end ½ of the array width before and after the central region in the
x (RA) direction.

In addition, the top of the array is aligned with the bottom of the map, and each
subsequent row is one step size (~6 arcseconds for the LFA) above the prior one (see
Fig. 6-4). We use a 6 arcsecond step size along the row, which will result in a fully
sampled map. We continue to make rows until the bottom of the array is aligned with the
top of the map.

For this map, a scan length of 140 arcsec is sufficient to cover the central region and half
of the array width before and after the central region. This scan length is also an multiple
of the step size, which is a requirement for upGREAT maps. Based on the selected scan
length and step size, each scan will have 20 points. Here we again select an integration
time of 1 second per point, so each scan will take 20 seconds. The off position will
require √20 ≈ 4.5 seconds, for a total of 24.5 seconds per scan. The entire map
(including starting the map half of the array width below the central region and ending
the map ½ of the array width above the central region) is made up of 20 rows. Thus, the
total on+off time for the entire map is 490 seconds; after including a factor of 2 for
overhead, the whole map takes  about 17 minutes. Every point within the central region
would have an integration time of 14 seconds (the combination of 2 polarizations x 7
maps, one for each pixel, with an integration time of 1 second each).

Figure 6-4.

Figure 6-4. Overlay of OTF map implimenting the LFA configuration.
Each long rectangle represents the region covered by a pixel during a
scan. The red rectangles show the first scans of the map. The thick
blue square shows the fully sampled region of the map. Green circles
show the seven pixels of the upGREAT array at the reference position.

https://www.sofia.usra.edu/sites/default/files/Instruments/GREAT/Images_Media/great_classic_otf_overlay_oh7.jpg


Note: In this example, if the other channel used for observing is a single pixel, a
rectangular map will be created in this channel as well. Whether or not this map is fully
sampled will depend on the frequency of the other channel and the step size used in the
map.
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6.2.3.2b   4GREAT L1 Channel
In this example, we want to make a fully-sampled map of the filamentary cloud shown in
Fig. 6-5 using L1, a single pixel channel. For this map, a rectangle of ~240 arcsec by
~128 arcsec, rotated by an angle of 45 degrees CCW, would cover the area of interest. If
we select a step size of 8 arseconds, which would result in a fully-sampled map, we could
scan in the long direction, with 30 (240 arcsec / 8 arcsec/dump) dumps along the scan
row and 16 rows (128 arcsec / 8 arsec between rows). To keep the scan duration within
30 seconds, we select a dump time of 1 second per point. The off position will require
√30 * 1 second ≈ 5.5 seconds, for a total of 35.5 seconds per scan. Thus, the total
on+off time for the entire map is 568 seconds; after including a factor of 2 for overhead,
the whole map takes about 19 minutes. Every point within the map would have an
integration time of 1 second.

Figure 6-5.

Figure 6-5. Overlay of OTF map in the L1 configuration. Each long
rectangle represents the region covered by a pixel during a scan. This
map is rotated by 45 degrees (CCW) to match the morphology of the
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filamentary cloud.
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6.2.3.3   OTF Array Mapping
The basic unit of the upGREAT array mapping scheme is referred to as a block, which
consists of a single or multiple scans of the same length, in the same direction (Fig. 6-6).
For both the LFA and the HFA, the projected pixel spacing (after rotating the array by -
19.1°) is such that a single scan results in an under-sampled map. To create a fully
sampled map, it is necessary to make at least one more scan to fill in the gaps between
pixels. The default behavior is to make a second scan, creating a fully sampled map and
completing the block. It is possible, however, to scan only a single time (creating an
under-sampled map), or more than two times (creating an oversampled map), depending
on the goals of the project. 

Figure 6-6.

A single map can consist of any number of blocks, and can scan in the x- or y- direction,
or both. The parameters of the x- and y-direction scans are independent, but can be used
in concert to create fully sampled maps of a region, scanning in both directions (Fig. 6-7).
Scanning in both directions helps to minimize the striping effects that can be caused by
the different characteristics of the array pixels.

Figure 6-7.

Fig. 6-7. Left, A map composed of six blocks scanning in the x-
direction. There are three blocks along the scan direction, and
two blocks perpendicular to the scan direction. The region interior to
the two vertical white lines shows the inner coverage region. Right, A
map composed of six blocks scanning in the y-direction. There are two
blocks along the scan direction, and three blocks perpendicular to the
scan direction. The region interior to the two horizontal white lines
shows the inner coverage region. Maps scanning in both directions can
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be set up to align the inner coverage regions of the two maps.

To calculate the size of the inner coverage region along the scan direction:
inner coverage = [(block length) * (# of blocks in scan direction) – 1] * (array size)

where block length is in units of the array size.
 
To calculate size of the inner coverage region perpendicular to the scan direction:

inner coverage = (# of blocks perpendicular to scan direction) * (array size)
 

Because of the flexibility of the mapping scheme, there can be multiple ways to observe
the same region. For example, the two setups in Fig. 6-8 both fully cover the same area.
Some important factors in determining the proper setup between these two options are
the desired integration time per point, the step size between the points, and the duration
of a single scan.

Figure 6-8.

Figure 6-8. Left, A map consisting of two blocks, each one 2*(array
width) long. Right, A map consisting of a single block that is 4*(array
width) long. The total inner coverage for both maps is the same.
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6.2.3.3a   upGREAT LFA Channel
In this example, the rotated array makes four total scans—two in the x- (RA) direction
and two in the y- (Dec) direction Fig. 6-9. Because the projected pixel separation of 11
arcsec is larger than the beam size at 1.9 THz (14 arcsec), two scans in each direction
are required to fully sample the area. These scans are separated by 5.5 arcsec (1/2 of
the projected pixel separation), resulting in a slightly oversampled map.

To ensure that all pixels cover a part of the central region of the map during each scan,
the scans start and end ½ of the array width before and after the central region. To get
evenly spaced sampling, we select a 5.5 arcsecond step size along the rows. This step
size, along with the ½ array length added to the beginning and end of the scan, results in
a total scan length of 143 arcseconds (26 steps).

If we select 1 second integration time per point, each scan will take 26 seconds, and the
off integration for each scan will take √26 ≈ 5 seconds. Thus, for the 4 scans that
comprise the map, the total on+off time will be approximately 125 seconds. Including a
factor of two for overhead, the total time for this map would be a little over four minutes,
and each position in the central region of the map would have an integration time of ~4
seconds (2 seconds from each polarization).

Figure 6-9.
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Figure 6-9. Overlay of OTF Array map utilizing the LFA configuration.
Each long rectangle represents the region covered by a pixel during a
scan. The red rectangles show the first scans of the map. The thick
blue square shows the fully sampled region of the map. Green circles
show the 2x7 pixels of the upGREAT array in the off position.

Note: In this example, if the other channel used for observing is a single-pixel, only an
irregularly spaced map will be created in this channel. The shape of this will match the
region traced out by the center array pixel.
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Return to the Table of Contents for this section at any time by selecting Return to Table
of Contents. Users may also navigate through the entire Observer's Handbook by using
the complete Table of Contents menu to the right.

7.1   Specifications
7.1.1   Instrument Overview
The High-resolution Airborne Wideband Camera (HAWC+) is a multi-wavelength far-
infrared imager and polarimeter with continuum bandpasses from 50 um to 240 um.
HAWC+ Total Intensity Imaging uses a filter wheel and a polarizing grid to split incoming
light into two orthogonal components of lineal polarization, the reflected (R) and
transmitted (T) rays. For Imaging Polarimetry, a rotating half-wave plate (HWP) is
introduced before the filter wheels. The current state of the instrument includes a 64x40
array measuring the R polarization state and a 32x40 array for the T polarization state.
HAWC+ observations are diffraction-limited with a spatial resolution of 5 to 20 arcsec
and a field of view (FOV) of ~2 to 10 arcmin. HAWC+ is currently not offering
observations at 63 um (Band B).
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7.1.1.1   Design
A schematic of the HAWC+ optical design is shown in Figure 7-1. Prior to entering the
HAWC+ cryostat, light from the SOFIA telescope enters the set of warm fore-optics. The
light is reflected from a folding mirror to a field mirror, capable of imaging the SOFIA
pupil at the cold pupil inside the HAWC+ cryostat. After the fore-optics, light enters the
cryostat through a 7.6 cm diameter high-density polyethylene (HDPE) window, then
passing through a cold pupil on a rotatable carousel, a near-infrared blocking filters to
define each bandpass and lenses designed to optimize the plate scale. The pupil
carousel and the filter wheel are at a temperature of ~10 K. The carousel contains eight
aperture positions, four of which contain half wave plates (HWPs) for HAWC+ bands, an
open aperture whose diameter is matched to the SOFIA pupil, and three aperture options
meant only for instrument alignment tests.

After the pupil carousel, the light passes through a wire grid that reflects one component
of linear polarization and transmits the orthogonal component to the detector arrays (R
and T arrays, respectively—see Figure 7-2). The polarizing grid is heat-sunk to the
HAWC+ 1 Kelvin stage.

To perform polarimetry observations, a HWP matched to the band-pass is rotated
(usually through four discrete angles) to modulate the incident light and allow
computation of the Stokes parameters. The total intensity can be measured simply by
removing the HWPs from the optical path and using the open pupil position, then
summing the signal from the R & T arrays.

The 64x40 HAWC+ detector array is composed of two co-mounted 32x40 subarrays from
NASA/GSFC and NIST. The detectors are superconducting transition-edge sensor (TES)



thermometers on membranes with a wide-band absorber coating. The detector array is
indium bump bonded to a matched array of superconducting quantum interference
device (SQUID) amplifiers, all cooled to an operating temperature of ~0.2 K in flight.

Figure 7-1.

Figure 7-1. Schematic of the HAWC+ optics. Light from the SOFIA
telescope is incident from the right. The field and folding mirrors are
mounted on the HAWC+ cryostat but extend into the SOFIA Nasmyth
tube. At the polarizing grid the light is split into two orthogonal
components of linear polarization and detected at the two separate
arrays.

 

Figure 7-2.
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Figure 7-2. HAWC+ utilizes two coaligned
arrays of TES detectors, each array receiving
polarized light from the source either by
reflection (the R array) or transmission (the T
array). The R array is populated with two
32x40 subarrays separated by 2.0 pixels,
referred to as R0 (top left) and R1 (top right).
The arrays are coaligned such that R0 and T0
(bottom left) observe the same patch of sky.
Polarization observations are only supported
using the R0 and T0 subarrays, and therefore
observations are limited to the left half of the
nominal field of view, or 32x40 pixels. Total
intensity observations are supported using
the combined R0 and R1 field of view, or
64x40 pixels with a 2.0 pixel gap between
them.
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7.1.2   Performance
The absorbing coatings on the HAWC+ detector arrays were optimized to produce about
50% efficiency across the wide (50–240 μm) range of bandpasses. The TESs were
designed to optimize the sensor time constants and background power at which they
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saturate, with the goal being operation at both laboratory and stratospheric background
levels. The final design includes a superconducting transition temperature of ~0.3 K and
a detector yield of > 50%. Measurements of detector noise show that their contribution
to total measurement uncertainties is negligible such that noise levels are dominated by
background photons from the atmosphere.

Measurements of the HAWC+ optical system in the laboratory are consistent with optical
models, and flight data have confirmed that the observations are diffraction limited at all
wavelengths. 

Table 7-1 shows the Full Width Half Maxiumum (FWHM) of each bandpass as measured
using Gaussian profiles, the finite size of the HAWC+ detectors, and a convolution across
the measured filter bandpasses. The Instrumental Polarization (IP) of HAWC+ at each
band is shown in terms of the normalized Stokes parameters, q and u, which were
estimated using the observations of planets during several observing runs on November
2016 and May 2017. The IP is mainly derived from the tertiary mirror of SOFIA with the
position angle of polarization perpendicular to the tertiary mirror direction. The filter
transmission curves (text tables) are available as a zip file or individually from Table 7-1.

For polarimetry observations, the current configuration of HAWC+ lacks a second T
polarization state array; as such, the field of view is reduced to approximately half in the
largest side of the array, providing a 32x40 pixel size rather than 64x40 pixels (the first
element of the Field of View in Table 7-1).  Total intensity observations are unaffected
and can use the whole field of view via the R polarization state.

 
Table 7-1: Instrument Characteristics

Instrument Characteristics
Parameter Units Band A Band C Band D Band E

Mean Wavelength (λ ) μm 53 89 154 214

Bandwidth (Δλ) - 9.01 16.91 33.88 42.8

Beam Size (FWHM) arcsec 4.85 7.8 13.6 18.2

Pixel Size arcsec 2.55 4.02 6.90 9.37

Total Intensity FOV arcmin 2.8x1.7 4.2x2.7 7.4x4.6 10.0x6.3

Polarimetry FOV arcmin 1.4x1.7 2.1x2.7 3.7x4.6 5.0x6.3

NESB  (photo) MJy sr  h 18.8 6.3 1.6 0.8

MDCF mJy 250 300 260 230

Mapping Speed See footnote 0.0027 0.029 1.1 7

MDCPF % Jy 80 50 50 50

0

a

b -1 1/2

c

d d

e
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IP
q -0.0154 -0.0151 0.0028 -0.0129

u -0.0030 0.0090 0.0191 0.0111

MIfP MJy sr  h 28,000 6,000 2,000 1,300

Response Curve  
png file

txt file

png file

txt file

png file

txt file

png file

txt file

Parameter Units Band A Band C Band D Band E

 The center-to-center spacing of the pixels; pixel sizes (the space taken up by the
photon sensitive area) are smaller by 0.21 arcsec at 53 μm and 0.75 arcsec at 215 μm.
 Noise Equivalent Surface Brightness for S/N = 1 into a single HAWC+ beam (FWHM

given here).
 Minimum Detectable Continuum Flux for a point source with S/N = 4 in a 900 second

integration.
 Real scan rate required to achieve a given an NESB. Units: arcmin  h  (MJy sr )
 Minimum Detectable Continuum Polarized Flux for a point source with a S/N = 4 in a

900 second integration.
Instrumental Polarization estimated using the observations of planets during several
observing runs. The uncertainty of the instrumental polarization is smaller than 0.003 in
both Stokes q and u.
Minimum total Intensity required to measure Polarization (MIfP) to an uncertainty level

σ  ≤ 0.3%. All chop/nod and polarization overhead values have been applied to this
value.
 
HAWC+ point source sensitivities were updated on June 2, 2017 and the values given
here are based on the in-flight performance of the instrument. Note that values used in
previous SOFIA observing cycles (Cycles 4 & 5) were estimates that contained an
overestimated point source sensitivity by approximately a factor of two, so proposals
should be updated accordingly for Cycle 7 before submission.
 
All photometric sensitivity estimates assume 100% observing efficiency without
chopping and nodding. These values are pre-flight estimates and subject to change after
the HAWC+ instrument has been commissioned. SITE provides the on-source time
for specific observations, while USPOT estimates the overhead for a given instrument
configuration.

Entries in blue represent predicted values; Band B is currently unavailable due to
saturation in the band but may be offered as shared risk in future cycles.
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7.1.2.1   Filters
HAWC+ can produce images using continuum bandpasses in either Total Intensity
Imaging or Imaging Polarimetry configurations. In Imaging Polarimetry, the dual-beam
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nature of HAWC+ allows for the simultaneous measurement of both orthogonal lineal
polarization components and obtain the Stokes parameters I, Q, and U. In Total Intensity
Imaging, the sum of the R and T arrays provides the total intensity, Stokes I. As the HWP
are used in Imaging Polarimetry, there is a slight loss of sensitivity as the HWP
transmission is < 100% and additional overhead is required to account for rotating the
HWP.

Both observing modes can utilize any one of the four available filters. Figure 7-3 shows
transmission profiles including all filters for all bandpasses. The effective wavelengths
and bandwidths averaged over the total filter transmission are given in Table 7-1.

Figure 7-3.

Figure 7-3.
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7.1.2.2   Total Intensity Imaging Sensitivities
The equations provided below are included for informational purposes only,
and should not be entered into USPOT. Integration times calculated using the
equations below include overheads, and USPOT already adds the telescope overheads
into the exposure times entered. For USPOT entries use SITE, which only takes into
account on-source time.

Observations with HAWC+ for measurements of Total Intensity can be performed using
either on-the-fly scanning (OTFMAP, where the telescope moves continuously at rates of
~10–200 arcsec/second without chopping of the secondary mirror) or using rapid

https://www.sofia.usra.edu/sites/default/files/Instruments/HAWC_PLUS/Images_Media/HAWCp_filters_all_OH7.png
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modulation (chopping ~ 5–10 Hz) of the secondary accompanied by slow nodding of the
telescope. The chopping option consists of a two-position chop, parallel to the nod
direction where the chop amplitude matches the nod amplitude (NMC).

Table 7-1 presents HAWC+ imaging sensitivities for point sources, surface brightness,
and mapping speed through each bandpass. Surface brightness is measured in units of
MJy/sr and is the intensity required for a S/N = 1 observation in a one-hour integration
time averaged over a single HAWC+ beam. The Minimum Detectable Continuum Flux
into a HAWC+ beam is that needed to obtain a S/N = 4 in 900 seconds of on-source
integration time. 

HAWC+ time estimates should be made using the on-line exposure time calculator, SITE.
Note that integration times scale as shown in Equation 7-1 and Equation 7-2 from the
values in Table 7-1:
(Eq. 7-1)

 
(Eq. 7-2)

where t is the integration time and σ is the desired sensitivity for S/N = 1, each in the
appropriate units. For OTFMAP, a useful sensitivity value is the mapping speed given in
Equation 7-3:

(Eq. 7-3)

where γ is related to the filling factor, Ω  is the solid angle of the HAWC+ detector
array, and s is some measure of the instrument sensitivity (e.g., MDCF or NESB). The
values in Table 7-1 are given for S/N = 1 in a one-hour integration time assuming γ = 1,
while SITE and Figure 7-3 use a more realistic value γ = 0.75. The time to map an area Ω
(≥ Ω ) to a sensitivity level σ is given by Equation 7-4:

(Eq. 7-4)

Note that this scaling only applies to map areas larger than the array field of view.

Atmospheric transmission will affect sensitivity, depending on water vapor overburden as
will telescope zenith angle and telescope emissivity. For the estimates in Table 7-1 and
Figure 7-3 we use a precipitable water vapor of 7.3 μm, a 50° zenith angle, and a
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telescope emissivity of 15%.
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7.1.2.3   Imaging Polarimetry Sensitivities
The equations provided below are included for informational purposes only,
and should not be entered into USPOT. Integration times calculated using the
equations below include overheads, and USPOT already adds the telescope overheads
into the exposure times entered. For USPOT entries use SITE, which only takes into
account on-source time.

HAWC+ contains four monochromatic HWPs. For Bands C, D, and E, the HWP thicknesses
are matched to the bandpass filters. The thickness of the Band A HWP is matched to a
wavelength between those of Bands A (53 μm) and B (63 μm), approximately 58 μm.
However, this slight mismatch should not introduce significant systematics into the
system. For the pre-flight HAWC+ sensitivity estimate here, the total system polarization
efficiency (HWP + polarizing grid + all other optics) is assumed to be 90% for all five
passbands.

The polarization sensitivity σ  follows from the imaging sensitivity σ  so that Equation 7-5
is true:

(Eq. 7-5)

where I is the source intensity, η  is the system polarization efficiency, and σ  is
measured in units of percent (%). The Minimum Detectable Continuum Polarized Flux
(MDCPF) reported in Table 7-1 is the value σ  x I above, and follows from the total
intensity MDCF. USPOT will add overhead values appropriate to NMC mode for
polarimetry.

For Imaging Polarimetry, another useful quantity is the Minimum total Intensity required
in order to measure polarization (MIfP) to a given depth in a given time interval.
Choosing σ  = 0.3% allows a polarization S/N = 3 for a source polarization of 1%, a value
not atypical of bright Galactic clouds and a likely lower limit for HAWC+ systematic
uncertainties. Table 7-1 lists these values for a one-hour integration time in units of
surface brightness for an extended source where, unlike other values in Table 7-1, all
appropriate overhead values have been added.

HAWC+ time estimates should be made using the online exposure time calculator, SITE.
Note that integration times scale as shown in Equation 7-6 and Equation 7-7 from the
values in Table 7-1:

(Eq. 7-6)
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(Eq. 7-7)

where t is the integration time and σ  is the desired sensitivity for S/N = 1, each in the
appropriate units.

A simple estimate for the polarization angle uncertainty is given by Equation 7-8:

(Eq. 7-8)

Current best estimates for systematic uncertainties are 0.8% in percent polarization and
10° in polarization position angle.
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7.2 Planning Observations
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The HAWC instrument has two main observing configurations: Total Intensity Imaging
and Imaging Polarization. The instrument also has two standard observing modes for
imaging: the Nod Match Chop (NMC) mode combines traditional chopping with
nodding and On the Fly Mapping (OTFMAP) mode keeps the secondary mirror fixed as the
telescope primary is scanned across the source. The NMC observing mode is used for
polarization observations; this mode includes chopping and nodding cycles in multiple
half wave plate (HWP) positions.

The standard NMC mode is a subset of the standard two-position chopping with nodding
mode (C2N). NMC consistis of several steps, listed below and illustrated in Figure 7-5.

1. Chop, where the secondary mirror of the telescope is moved at some frequency and
angle.

2. Nod, where the telescope nods back and forth, each chopper beam being placed on
the desired source.

3. Dither, which is a set of Nods at small offsets on the sky (nominally four positions),
with each position having a Chop/Nod observation taken.

Figure 7-5.

https://www.sofia.usra.edu/sites/default/files/Instruments/HAWC_PLUS/Images_Media/OH7_HAWC_chop_geometry.jpeg


Figure 7-5. The standard ABBA nod sequence of NMC mode.

Total Intensity observations with OTFMAP mode produce a continuous telescope motion
with a two choices of pattern shape, the sizes of which are selected by the proposer. The
first pattern (Box) is a series of linear scans used to map some rectangular region on the
sky. The second pattern (Lissajous) is a curvilinear shape meant to cover a small region
whose size is less than the array field of view.
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7.2.1   Total Intensity Observations
7.2.1.1   On the Fly Mapping
In OTF mode, the secondary mirror remains stationary on the optical axis of the
telescope while the telescope assembly itself slowly moves with respect to the sky. This
scan motion modulates the celestial source with respect to the atmosphere in a manner
similar to chopping the secondary mirror. Scan rates must reach (~2 Hz) x (HAWC+
beam width) in order to remove the source from the atmospheric background. This
implies rates ~10–80 arcseconds per second depending on the bandpass.

In order to ensure absolute flux calibration in this mode, observers must carefully plan
observations so that some of the mapped region contains no extended emission from the
science target. Otherwise, one can only measure a differential flux with respect to the
lowest measured intensity level. Further removal of residual atmospheric signal is
performed by removing common-mode noise observed in all HAWC+ detectors. This
averaging amounts to a spatial filter with size equal to the HAWC+ FOV. Therefore, while
large maps may be necessary to reach a true zero-intensity level, users should be aware
that one cannot also recover all spatial scales in a given region.

HAWC+ offers two scan types for OTFMAP scan patterns: Lissajous and Box. Lissajous
scans are recommended for soucres smaller than the HAWC+ field of view (FOV) at a
given bandpass, while Box scans (analogous to traditional raster scanning methods) are
more efficient at mapping large areas several times the FOV. The patterns in Figure 7-
6 show the two-dimensional location of the array center during the progression of a scan,
with Lissajous scans depicted in the two top images and Box scans shown in the two
bottom images. Two-dimensional scans are necessary in order to reconstruct all spatial
scales in a map. The Lissajous scans are two-dimensional by definition,
however Box scans require multiple scans, even in the case where a source fits
completely in the HAWC+ FOV. The secondary (or cross) scan direction of a Box scan
should by rotated with respect to the initial scan (orthogonal scans are best,
although not absolutely necessary).

Figure 7-6.



Figure 7-6. Example scan patterns for HAWC+ OTFMAP mode. These
patterns show the location of the central array pixel, which moves
along the paths at a user-defined rate. The upper panels are Lissajous
patterns. The top-left panel is shortly after starting an integration,
while the top-right panel is after a longer time period. The lower-left
panel shows a series of linear scans used to cover a larger region. The
lower-right panel also shows the required cross-scan in the case of
linearly scanned areas. Plots taken from Kovács (2008).

While proposers must request an area for scan mapping, they do not need to specify any
specific pattern in Phase I proposals. Successful proposers will work with a SOFIA Support
Scientist to choose an optimal scan pattern and strategy for their observations. For the
purposes of the proposal, scan map time estimates should be made using the sensitivity
estimates in Table 7-1. For sources smaller than the HAWC+ FOV, use the MDCF or
NESB. For larger maps one may use the Mapping Speed.

Scan durations shorter than 10 min are recommended to ensure the stability of
continuous OTFMAP observations for large periods of time. If a given map area and
sensitivity cannot be achieved in that time, then multiple pointing positions should be
used.
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7.2.1.1a   Lissajous
In Lissajous observations, the telescope is driven to follow a parametric curve at a non-
repeating period; as the scan progresses longer in time, more and more of the area
defined by a scan amplitude will be covered. As commissioning of HAWC+ progresses,
this sequence will be refined and may include additional calibration observations during
the sequence described.

Figure 7-7 demonstrates the actual scan modes used in flight. The white box shows the
Total Intensity FOV, the orange line shows the actual path as taken by the telescope, and
the background images are the resulting image after the scan data is reduced.

Figure 7-7.

Figure 7-7.
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7.2.1.1b   Box
In Box scans, the telescope is driven in a linear fashion at the specified rate in one
direction for the given length and then moved perpendicularly before scanning in the
reverse direction—similar to how one would mow a very large lawn. This is continued
until the desired area is covered, after which the process repeats in the perpendicular
direction to cross the same areas in the perpendicular direction.  For optimal reduction
and coverage, three scans are performed, each at a slightly different starting angle to
improve coverage and provide reduction robustness against systematic effects. As
commissioning of HAWC+ progresses, this sequence will be refined and may include
additional calibration observations during the sequence described.

https://www.sofia.usra.edu/sites/default/files/Instruments/HAWC_PLUS/Images_Media/OH7_lissajous.png


Figures 7-8, 7-9, and 7-10 demonstrate the actual scan modes used in flight. The white
box shows the Total Intensity field of view, the orange line shows the actual path as
taken by the telescope, and the background images are the resulting image after the
scan data is reduced.

Figure 7-8.

Figure 7-8. The scan starts at the bottom right, pauses midway
through to obtain an estimate of tracking performance (the orange dot
on the middle right) and then proceeds until the end.

 
Figure 7-9.
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Figure 7-9. The scan starts at the upper right, pauses midway
through to obtain an estimate of tracking performance (the orange dot
on the middle of the top) and then proceeds until the end. The two
directions are then combined to obtain the image below.

 
Figure 7-10.
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Figure 7-10. The two directions from Fig.7-7 are then combined to
obtain this image.
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7.2.1.2   Nod Match Chop
In NMC mode, four dither points are created symmetrically about the central object
coordinates; an example is given in Figure 7-11. At each dither position, chopping is
started at the given throw and angle and the telescope is nodded between two
symmetrically located points 180 degrees seperated from each other (positions A and B).
As commissioning of HAWC+ progresses, this sequence will be refined and may include
additional calibration observations during the sequence described.

NMC mode observations, are very time intensive and are subject to large observational
overheads waiting for the telescope and/or secondary mirror assembly to complete
chop/nod/dither movements. Estimated overheads before first flights were purposefully
large (factors of 10!) and these large overhead factors remain in USPOT. As such, it is
recommended that observers consider utilizing OTFMAP mode for Total Intensity
observations, which provides better sensitivity and smaller overheads.

If the source has an angular extent larger than the HAWC+ FOV in NMC mode, or larger
than can be accommodated in a 10 minute OTFMAP, the central position of each HAWC+
field must be specified, with due consideration of the desired overlap of the individual
frames. For mosaic observations, proposers should ensure that they request the total
integration time required for all fields.

Figure 7-11.

Figure 7-11. Example of a source being dithered between four
positions. The green crosshairs give the position of one of the sources

https://www.sofia.usra.edu/sites/default/files/Instruments/HAWC_PLUS/Images_Media/OH7_ditherseq_0_0.png


and is at the same physical location for each image, showing the
image movement.
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7.2.2   Polarimetry Observations
For Cycle 7, HAWC+ polarization observations may only be performed using the NMC
observing mode. In this mode, four standard NMC observations are performed, one at
each of four angles of the HWP (relative angles 0, 22.5, 45, and 67.5 degrees). This is
followed by dithering, where the HWP cycle is repeated again for a total of four dither
positions. We currently estimate an additional overhead of 90% efficiency associated
with moving the HWP between positions. This has been incorporated into polarization
sensitivities in Figure 7-3. The minimum time for a single polarization NMC observation
with dithering is ~20 min.

As in the case of Total Intensity NMC, chopping into regions of bright, extended flux must
be cafefully avoided. Additionally, the polarization state of that reference flux must be
considered in both percent polarization and angle. Typically, neither of these values will
be known for HAWC+ observations (although proposers may want to consult the latest
Planck data release). This polarized reference beam will produce additional systematic
uncertainties in the data. In the case where the source and reference beam have the
same polarization level, the systematic polarization uncertainty is linearly proportional to
the reference-to-source intensity ratio. For further discussion, see Schleuning et al.
(1997) and Novak et al. (1997).Copy

If the source has an angular extent larger than the HAWC+ FOV in NMC mode, the
central position of each HAWC+ field must be specified, with due consideration of the
desired overlap of the individual frames. For mosaic observations, proposers should
ensure that they request the total integration time required for all fields.
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7.2.2.1   Nod Match Chop
In NMC mode, four dither points are created symmetrically about the central object
coordinates. At each dither position, chopping is started at the given throw and
angle and the telescope is nodded between two symmetrically located points 180
degrees seperated from each other (positions A and B). Observations are performed in
sequence at position A, then B, then B again, and back to position A. After one of
these ABBA nod sequences, the HWP is rotated to the next angle; this continues until the
HWP has gone through four angles, after which the telescope moves to the next dither
position and repeats. As commissioning of HAWC+ progresses, this sequence will be
refined and may include additional calibration observations during the sequence
described.

Figure 7-12 below shows both the change in source RA (illustrating the nodding of the
source) and the half-wave plate angle for a single dither position of a polarization
sequence. The dashed lines denote the completion of a half-wave plate observing
sequence. This same sequence (four half-wave plate angles) is repeated for each dither
position to move the source appreciably and assist in the correction of bad/missing



pixels. The source is being chopped during this entire sequence (and accounts for the
thickness of the blue source RA line) but is not specifically highlighted here. The
standard ABBA nod sequence and the half-wave-plate angles are highlighted.

Figure 7-12.

Figure 7-12.

NMC mode observations, are very time intensive and are subject to large observational
overheads waiting for the telescope and/or secondary mirror assembly to complete
chop/nod/dither movements. Estimated overheads before first flights were purposefully

https://www.sofia.usra.edu/sites/default/files/Instruments/HAWC_PLUS/Images_Media/OH7_chopnoddither_0.png


large (factors of 10!) and these large overhead factors remain in USPOT. 
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8. The Data Cycle System
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8.   The Data Cycle System
8.1   Data Rights and Availability

Return to the Table of Contents for this section at any time by selecting Return to Table
of Contents. Users may also navigate through the entire Observer's Handbook by using
the complete Table of Contents menu to the right.

8.   The Data Cycle System
SOFIA proposals and observation data are managed by the SOFIA Data Cycle System
(DCS). The DCS is designed primarily to support Science and Mission Operations
activities associated with proposal programs for the observatory. Observatory data flow
is cyclic in nature (see Figure 8-1). First a proposal must be developed and submited to
the SOFIA Science Mission Operations (SMO). Once approved, the proposal becomes an
observing plan that the proposer uses to create and update astronomical observation
requests (AORs) that are used in both flight planning and on-aircraft execution. After
execution of the observations in-flight, the resulting data are archived and, for Facility
Science Instruments (FSIs), automatically processed (pipelined) to produce the final data
products, which are then served back to the original proposer via a simple user-
interface–thus completing the cycle begun by the original proposal and perhaps driving
new proposals. The data products are made available to the astronomical community for
archival research purposes after an appropriate proprietary period.

Figure 8-1.

Figure 8-1. Cartoon of the SOFIA Data Cycle.
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The goal of the SOFIA DCS is to maximize the scientific productivity and efficiency of the
observatory by providing a suite of easy-to-use tools and infrastructure that are
integrated with each other as well as other applications (e.g. Flight Management
Infrastructure) at each step in the data cycle.

The DCS Archive is the permanent repository for all raw scientific and housekeeping data
accumulated during SOFIA flights and any pipeline products produced thereafter (for
example, pipeline reduced data for FSIs). Access to the SOFIA Data Archive is via the
DCS web pages. Data can be retreived from the archive during the proprietary period
using an assigned DCS login username and password. The proprietary period for Cycle 7
will be 1-year from the date of ingestion into the DCS Archive. Once the proprietary
period expires, the data becomes public and can be accessed by anyone in the general
community.

In order to make use of most of the features of the DCS website, users must register by
clicking on the Register with DCS link on the DCS home page. After the registration form
has been submitted, the user will be notified by e-mail when the account has been
created. (Users should verify that mail from ''sofia.usra.edu'' is not blocked by any spam
filters.) After logging in, a registered user can change his/her profile and password at any
time using the View Profile link displayed next to the login name at the top of the DCS
pages.

The DCS includes a suite of software tools to archive data and to assist in the
preparion and submission of proposals:

SOFIA Proposal Tool (USPOT)
SOFIA proposals are created and modified using USPOT, a stand-alone application
available for a wide variety of platforms. The Download USPOT page includes links
to download the application and installation instructions for all supported platforms.
Complete help files are included with the application distribution and can be
accessed via the Help menu options within USPOT.
 
SOFIA Instrument Time Estimator (SITE)
In order to assist in the creation of SOFIA observing proposals, the DCS web site
provides an online SOFIA Instrument Time Estimator (SITE) that calculates the total
observation time required or signal-to-noise achieved.
 
Atmospheric Transmission Estimator (ATRAN)
To allow proposers to estimate the effects of atmospheric transmission on potential
observations and exposure times with SOFIA instruments, the DCS provides access
to a web-based version of the ATRAN program written by Steve Lord. For a specified
observing altitude and wavelength range, the web page will run ATRAN and
generate an output file and plot of the atmospheric transmission as a function of
wavelength. Both the output file and plot can be downloaded to the user's desktop.
A brief description of the input parameters and how to run ATRAN is given at the top
of the web page.
 
Visibility Tool (VT)

https://dcs.arc.nasa.gov/userSupport/registration.jsp
https://dcs.arc.nasa.gov/observationPlanning/installUSPOT/uspotDownload.jsp
https://dcs.arc.nasa.gov/proposalDevelopment/SITE/index.jsp
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The Target Visibility Tool provides the capability to estimate what date, time, and
aircraft heading are required to observe an astronomical target. The tool is a Java
applet that is accessible on the Visibility Tool page. Details of which operating
systems and browsers are compatible with VT are provided on the Visibility Tool
page. A stand-alone version of VT is available for download.
 

To find the visibility of a given target, the user enters its co-ordinates (J2000 RA and
DEC), the estimated latitude and longitude of the observation (which defaults to the
SOFIA take-off location of Palmdale, CA), the start date and time, and the duration of
interest. The application plots the target elevation for the period of interest. A target is
visible to SOFIA if the elevation is in the range 20° to 60°.

Proposers may use VT to check the periods of visibility for their targets. For flights that
take off from and return to Palmdale, the southernmost allowed declination is -36°. 
Southern targets will be scheduled for observation during the Southern Hemisphere
Deployment that will take place during the southern winter of 2018.

Instructions on how to use VT and help on specific topics are available as part of the tool,
using either the Help pull-down menu or the ? button, both at the top, left of the applet
window.

In addition, the DCS provides users with a variety of search options for proposals, data,
and observing plans.

Proposal Search
All proposals submitted via USPOT are stored in the DCS observation planning
database and can be accessed from the DCS web pages. Users can retrieve
summary data for available proposals by using the Proposal Search page and
entering the relevant search criteria for the proposal(s) of interest. Summary
information will be displayed for each proposal (appropriate to the permissions of
the user).
 
Archive Search
Summary information is available for all public data in the DCS archive. From the
Science Archive Search page, MCS Archive Search page, or the Ancillary Files
Search page, users can specify search criteria to identify data of interest. Summary
info for resulting matches is shown in a table with appropriate links based upon user
permissions. Data that are still proprietary are available only to those on the
associated observing plan. Hence, users must log in using a DCS username to view
any proprietary data. Proprietary data can only be seen by those associated with
the program and selected SMO staff members. From the Summary Information table
for science data, users can click through to a list of all data products associated with
a particular observation (e.g., raw or pipelined data), or identify data to be
downloaded.
 
Observing Plans Search
Once a proposal is approved, it becomes an observing plan, which can be accessed
and modified as needed to support science and mission requirements by the
proposer and selected SMO staff members. Observing plans can be accessed from
the planning database using the Search Observing Plans link on the DCS web page.

https://dcs.arc.nasa.gov/observationPlanning/installVT/
https://dcs.arc.nasa.gov/observationPlanning/installVT/
https://dcs.arc.nasa.gov/proposalAccess/propSummary.jsp
https://dcs.arc.nasa.gov/dataRetrieval/SearchScienceArchiveInfo.jsp
https://dcs.arc.nasa.gov/dataRetrieval/SearchMCSArkInfo.jsp
https://dcs.arc.nasa.gov/dataRetrieval/SearchAncillaryFileInfo.jsp
https://dcs.arc.nasa.gov/observationPlanning/observingPlanSearch.jsp


Summary information will be displayed for each observing plan along with links to
the Observing Plan Details page. The Observing Plan Details page provides all the
information available for a plan and corresponding links to the editor functions to
make changes (for users with appropriate permissions).
 
Data Retrieval
Data can be retrieved by identifying desired data in the summary table and then
clicking the Retrieve Data button. In order to retrieve any data, the user must be
logged in. Only those with appropriate permissions and SMO staff are able to
retrieve data that is still within the proprietary period. Once designated for retrieval,
the files are staged to a public FTP server and a direct link is e-mailed to the user.
All science data products are available in their original format (e.g., FITS). The same
retrieval process is used for the MCCS and Ancillary data files.
 

Return to Table of Contents.

8.1   Data Rights and Availability
All scientific data from SOFIA observations will be distributed via the SOFIA Data Cycle
System's Science Archive. All data will be archived as Level 1 data (raw). Where
appropriate, Level 2 data (corrected for instrumental and atmospheric effects), Level 3
data (flux calibrated), and Level 4 data (a combination of Level 3 files to produce maps,
mosaics, etc) will also be archived. These data will be accessible to the general
community after a proprietary period of twelve months, starting at the ingestion of the
calibrated data into the archive.

In order to query the archive and retrieve data, it is necessary to register with the DCS.
This can be done by following the appropriate link (Register with DCS) on the main DCS
page. Registration is not required for using the proposal preparation and submission
tools.

Return to Table of Contents.

     

Hina Kazmi, NASA
SOFIA Program
Manager
NASA Ames

Margaret Meixner,
USRA
Science Mission
Operations Director
NASA Ames

        

https://dcs.arc.nasa.gov/dataRetrieval/SearchScienceArchiveInfo.jsp
https://dcs.arc.nasa.gov/userSupport/registration.jsp
https://dcs.arc.nasa.gov/
https://www.sofia.usra.edu/rss.xml
https://www.facebook.com/SOFIA-Stratospheric-Observatory-for-Infrared-Astronomy-187095228001013/
https://twitter.com/sofiatelescope
https://www.instagram.com/sofiatelescope/
https://www.youtube.com/user/SOFIAObservatory
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